955 resultados para Non-homogeneous Poisson models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a plane stress solution for the interaction analysis of strip footing resting on (i) a non-homogeneous elastic half-plane and (ii) a non-homogeneous elastic layer resting on a rigid stratum has been presented. The analysis has been done using a combined analytical and FEM method in which the discretization of the half-plane is not required and thereby minimizes the computational efforts considerably. The contact pressure distribution and the settlement profile for the selected cases of varying modulus half-plane, which has more relevance to foundation engineering, have been given. Experimental verification through a photoelastic method of stress analysis has been carried out for the case of footing on Gibson elastic half-plane, and the contact pressure distribution thus obtained has been compared with the theoretical results. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retransmission protocols such as HDLC and TCP are designed to ensure reliable communication over noisy channels (i.e., channels that can corrupt messages). Thakkar et al. 15] have recently presented an algorithmic verification technique for deterministic streaming string transducer (DSST) models of such protocols. The verification problem is posed as equivalence checking between the specification and protocol DSSTs. In this paper, we argue that more general models need to be obtained using non-deterministic streaming string transducers (NSSTs). However, equivalence checking is undecidable for NSSTs. We present two classes where the models belong to a sub-class of NSSTs for which it is decidable. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress-strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A problem with use of the geostatistical Kriging error for optimal sampling design is that the design does not adapt locally to the character of spatial variation. This is because a stationary variogram or covariance function is a parameter of the geostatistical model. The objective of this paper was to investigate the utility of non-stationary geostatistics for optimal sampling design. First, a contour data set of Wiltshire was split into 25 equal sub-regions and a local variogram was predicted for each. These variograms were fitted with models and the coefficients used in Kriging to select optimal sample spacings for each sub-region. Large differences existed between the designs for the whole region (based on the global variogram) and for the sub-regions (based on the local variograms). Second, a segmentation approach was used to divide a digital terrain model into separate segments. Segment-based variograms were predicted and fitted with models. Optimal sample spacings were then determined for the whole region and for the sub-regions. It was demonstrated that the global design was inadequate, grossly over-sampling some segments while under-sampling others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commonly used repair rate models for repairable systems in the reliability literature are renewal processes, generalised renewal processes or non-homogeneous Poisson processes. In addition to these models, geometric processes (GP) are studied occasionally. The GP, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensities. This paper deals with the reliability modelling of failure processes for repairable systems where the failure intensity shows a bathtub-type non-monotonic behaviour. A new stochastic process, i.e. an extended Poisson process, is introduced in this paper. Reliability indices are presented, and the parameters of the new process are estimated. Experimental results on a data set demonstrate the validity of the new process.