996 resultados para Neurological conditions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: Critically ill patients are frequently at risk of neurological dysfunction as a result of primary neurological conditions or secondary insults. Determining which aspects of brain function are affected and how best to manage the neurological dysfunction can often be difficult and is complicated by the limited information that can be gained from clinical examination in such patients and the effects of therapies, notably sedation, on neurological function. Methods to measure and monitor brain function have evolved considerably in recent years and now play an important role in the evaluation and management of patients with brain injury. Importantly, no single technique is ideal for all patients and different variables will need to be monitored in different patients; in many patients, a combination of monitoring techniques will be needed. Although clinical studies support the physiologic feasibility and biologic plausibility of management based on information from various monitors, data supporting this concept from randomized trials are still required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Interindividual variations in regional structural properties covary across the brain, thus forming networks that change as a result of aging and accompanying neurological conditions. The alterations of superficial white matter (SWM) in Alzheimer's disease (AD) are of special interest, since they follow the AD-specific pattern characterized by the strongest neurodegeneration of the medial temporal lobe and association cortices. METHODS: Here, we present an SWM network analysis in comparison with SWM topography based on the myelin content quantified with magnetization transfer ratio (MTR) for 39 areas in each hemisphere in 15 AD patients and 15 controls. The networks are represented by graphs, in which nodes correspond to the areas, and edges denote statistical associations between them. RESULTS: In both groups, the networks were characterized by asymmetrically distributed edges (predominantly in the left hemisphere). The AD-related differences were also leftward. The edges lost due to AD tended to connect nodes in the temporal lobe to other lobes or nodes within or between the latter lobes. The newly gained edges were mostly confined to the temporal and paralimbic regions, which manifest demyelination of SWM already in mild AD. CONCLUSION: This pattern suggests that the AD pathological process coordinates SWM demyelination in the temporal and paralimbic regions, but not elsewhere. A comparison of the MTR maps with MTR-based networks shows that although, in general, the changes in network architecture in AD recapitulate the topography of (de)myelination, some aspects of structural covariance (including the interhemispheric asymmetry of networks) have no immediate reflection in the myelination pattern.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Positron emission tomography imaging has both academic and applied uses in revealing the distribution and density of different molecular targets in the central nervous system. Following the significant progress made with the dopamine D2 receptor, advances have been made in developing PET tracers to allow analysis of receptor occupancy of many other receptor types as well as evaluating changes in endogenous synaptic transmitter concentrations of transmitters e.g. serotonin and noradrenaline. Noradrenergic receptors are divided into α1-, α2- and β-adrenoceptor subfamilies, in humans each of which is composed of three receptor subtypes. The α2-adrenoceptors have an important presynaptic auto-inhibitory function on noradrenaline release but they also have postsynaptic roles in modulating the release of other neurotransmitters, such as serotonin and dopamine. One of the subtypes, the α2C-adrenoceptor, has been detected at distinct locations in the central nervous system, most notably the dorsal striatum. Several serious neurological conditions causing dementia, Alzheimer’s disease and Parkinson’s disease have been linked to disturbed noradrenergic signaling. Furthermore, altered noradrenergic signaling has also been implicated in conditions like ADHD, depression, anxiety and schizophrenia. In order to benefit future research into these central nervous system disorders as well as being useful in the clinical development of drugs affecting brain noradrenergic neurotransmission, validation work of a novel tracer for positron emission tomography studies in humans was performed. Altogether 85 PET imaging experiments were performed during four separate clinical trials. The repeatability of [11C]ORM-13070 binding was tested in healthy individuals, followed by a study to evaluate the dose-dependent displacement of [11C]ORM-13070 from α2C-adrenoceptors by a competing ligand, and the final two studies examined the sensitivity of [11C]ORM-13070 binding to reflect changes in endogenous noradrenaline levels. The repeatability of [11C]ORM-13070 binding was very high. The binding properties of the tracer allowed for a reliable estimation of α2C-AR occupancy by using the reference tissue ratio method with low test-retest variability. [11C]ORM-13070 was dose-dependently displaced from its specific binding sites by the subtype-nonselective α2-adrenoceptor antagonist atipamezole, and thus it proved suitable for use in clinical drug development of novel α2C-adrenoceptor ligands e.g. to determine the best doses and dosing intervals for clinical trials. Convincing experimental evidence was gained to support the suitability of [11C]ORM-13070 for detecting an increase in endogenous synaptic noradrenaline in the human brain. Tracer binding in the thalamus tended to increase in accordance with reduced activity of noradrenergic projections from the locus coeruleus, although statistical significance was not reached. Thus, the investigation was unable to fully validate [11C]ORM-13070 for the detection of pharmacologically evoked reductions in noradrenaline levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse a fait l'objet d'une publication: Le nouveau sujet du droit criminel : effets secondaires de la psychiatrie sur la responsabilité pénale / Christian Saint-Germain. — Montréal : Liber, [2014]. — 358 pages ; 23 cm. ISBN 9782895784654.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La importancia del sueño y las patologías relacionadas con el mismo son ampliamente reconocidas en el campo de la medicina y la neurología, sin embargo la mayoría de neurólogos dedican muy poco tiempo al estudio de estas entidades y muy raramente durante la valoración de los pacientes se indaga acerca de la presencia de trastornos relacionados con el sueño. Esto es sorprendente si tenemos en cuenta que pasamos casi un tercio de la vida durmiendo, además de la alta incidencia de trastornos de sueño en la población general. A continuación revisaremos los principales trastornos del sueño, su diagnóstico y tratamiento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tremor is a clinical feature characterized by oscillations of a part of the body. The detection and study of tremor is an important step in investigations seeking to explain underlying control strategies of the central nervous system under natural (or physiological) and pathological conditions. It is well established that tremorous activity is composed of deterministic and stochastic components. For this reason, the use of digital signal processing techniques (DSP) which take into account the nonlinearity and nonstationarity of such signals may bring new information into the signal analysis which is often obscured by traditional linear techniques (e.g. Fourier analysis). In this context, this paper introduces the application of the empirical mode decomposition (EMD) and Hilbert spectrum (HS), which are relatively new DSP techniques for the analysis of nonlinear and nonstationary time-series, for the study of tremor. Our results, obtained from the analysis of experimental signals collected from 31 patients with different neurological conditions, showed that the EMD could automatically decompose acquired signals into basic components, called intrinsic mode functions (IMFs), representing tremorous and voluntary activity. The identification of a physical meaning for IMFs in the context of tremor analysis suggests an alternative and new way of detecting tremorous activity. These results may be relevant for those applications requiring automatic detection of tremor. Furthermore, the energy of IMFs was visualized as a function of time and frequency by means of the HS. This analysis showed that the variation of energy of tremorous and voluntary activity could be distinguished and characterized on the HS. Such results may be relevant for those applications aiming to identify neurological disorders. In general, both the HS and EMD demonstrated to be very useful to perform objective analysis of any kind of tremor and can therefore be potentially used to perform functional assessment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O Acidente vascular encefálico (AVE) é considerado uma das mais importantes causas de morte e perda funcional no mundo. Poucas condições neurológicas são tão complexas e devastadoras, provocando déficits neurológicos incapacitantes ou óbito nos sobreviventes. As regiões corticais são comumente afetadas por AVE, o que resulta em perda sensorial e motora. O estabelecimento dos padrões neuropatológicos em regiões corticais, incluindo a área somestésica, é fundamental para a investigação de possíveis intervenções terapêuticas. No presente estudo, investigamos os padrões de perda neuronal, microgliose, astrocitose, neurogênese e os déficits funcionais no córtex somestésico primário de ratos adultos, submetidos á lesões isquêmicas focais, induzidas por microinjeções de 40p Moles de endotelina-1 (ET-1). Foram utilizados 30 ratos (Rattus Norvegicus) da linhagem Wistar, adultos jovens, pesando entre 250-280g. Os animais foram divididos em grupos isquêmicos (N= 21) e controle (N=9). Os mesmos foram perfundidos nos tempos de sobrevida de 1, 3 e 7 dias. Os animais do grupo de 7 dias foram submetidos à testes comportamentais para avaliar a perda de função sensório-motora. Secções foram coradas pela violeta de cresila, citocromo oxidase e imunomarcadas para identificação neurônios (anti-NeuN), microglia ativada e não ativada (Iba-1), macrófagos/microglia ativados (ED-1), astrócitos (GFAP) e neuroblastos (DCX). As comparações estatísticas entre os grupos foram feitas por análise de variância (ANOVA), um critério com correção a posteriore de Tukey. Os animais isquêmicos apresentaram déficits sensório-motores revelados pela Escala Neurológica de Bederson, Teste de Colocação da Pata Anterior e Teste do Canto. Microinjeções de ET-1 induziram lesão isquêmica focal na área somestésica primária com perda neuronal, astrocitose e microgliose progressivas principalmente nos tempos mais tardios. A coloração para citocromo oxidase revelou o campo de barris, mas, inesperadamente, marcou uma população de células inflamatórias com características de macrófagos na região isquêmica. Houve aumento do número de neuroblastos, principalmente ao sétimo dia, na zona subventricular do hemisfério isquêmico, em relação ao hemisfério contralateral e animais controle. Não houve migração significativa de neuroblastos no córtex somestésico isquêmico. Os resultados mostram que microinjeções de ET-1 são um método eficaz para indução de perda tecidual e déficits sensoriais no córtex somestésico primário de ratos adultos. Também se evidencia que a zona subventricular é influenciada por eventos isquêmicos distantes e que populações macrofágicas parecem aumentar o padrão de expressão de citocromo oxidase. O referido modelo experimental pode ser utilizado em estudos futuros onde agentes neuroprotetores em potencial podem ser utilizados para minimizar as alterações neuropatológicas descritas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly. Here, we present data from a single-voxel proton magnetic resonance spectroscopy study of 64 individuals and explore the relationship between BDNF polymorphisms and prefrontal NAA level. Our results indicate an association between a single nucleotide polymorphism (SNP) within BDNF, known as rs1519480, and reduced NAA level (p = 0.023). NAA levels were further predicted by age and Asian ancestry. There was a significant rs1519480 × age interaction on NAA level (p = 0.031). Specifically, the effect of rs1519480 on NAA level became significant at age ⩾34.17 yr. NAA level decreased with advancing age for genotype TT (p = 0.001) but not for genotype CT (p = 0.82) or CC (p = 0.34). Additional in silico analysis of 142 post-mortem brain samples revealed an association between the same SNP and reduced BDNF mRNA expression in the prefrontal cortex. The rs1519480 SNP influences BDNF mRNA expression and has an impact on prefrontal NAA level over time. This genetic mechanism may contribute to inter-individual variation in cognitive performance seen during normal ageing, as well as contributing to the risk for developing psychiatric and neurological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immunoglobulin (Ig) administration via the subcutaneous (s.c.) route has become increasingly popular in recent years. The method does not require venous access, is associated with few systemic side effects and has been reported to improve patients' quality of life. One current limitation to its use is the large volumes which need to be administered. Due to the inability of tissue to accept such large volumes, frequent administration at multiple sites is necessary. Most studies conducted to date have investigated the use of subcutaneous immunoglobulin (SCIg) in patients treated previously with the intravenous (i.v.) formulation. New data now support the use of s.c. administration in previously untreated patients with primary immunodeficiencies. SCIg treatment may further be beneficial in the treatment of autoimmune neurological conditions, such as multi-focal motor neuropathy; however, controlled trials directly comparing the s.c. and i.v. routes are still to be performed for this indication. New developments may further improve and facilitate the s.c. administration route. For example, hyaluronidase-facilitated administration increases the bioavailability of SCIg, and may allow for the administration of larger volumes at a single site. Alternatively, more concentrated formulations may reduce the volume required for administration, and a rapid-push technique may allow for shorter administration times. As these developments translate into clinical practice, more physicians and patients may choose the s.c. administration route in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep brain stimulation of different targets has been shown to drastically improve symptoms of a variety of neurological conditions. However, the occurrence of disabling side effects may limit the ability to deliver adequate amounts of current necessary to reach the maximal benefit. Computed models have suggested that reduction in electrode size and the ability to provide directional stimulation could increase the efficacy of such therapies. This has never been demonstrated in humans. In the present study, we assess the effect of directional stimulation compared to omnidirectional stimulation. Three different directions of stimulation as well as omnidirectional stimulation were tested intraoperatively in the subthalamic nucleus of 11 patients with Parkinson's disease and in the nucleus ventralis intermedius of two other subjects with essential tremor. At the trajectory chosen for implantation of the definitive electrode, we assessed the current threshold window between positive and side effects, defined as the therapeutic window. A computed finite element model was used to compare the volume of tissue activated when one directional electrode was stimulated, or in case of omnidirectional stimulation. All but one patient showed a benefit of directional stimulation compared to omnidirectional. A best direction of stimulation was observed in all the patients. The therapeutic window in the best direction was wider than the second best direction (P = 0.003) and wider than the third best direction (P = 0.002). Compared to omnidirectional direction, the therapeutic window in the best direction was 41.3% wider (P = 0.037). The current threshold producing meaningful therapeutic effect in the best direction was 0.67 mA (0.3-1.0 mA) and was 43% lower than in omnidirectional stimulation (P = 0.002). No complication as a result of insertion of the directional electrode or during testing was encountered. The computed model revealed a volume of tissue activated of 10.5 mm(3) in omnidirectional mode, compared with 4.2 mm(3) when only one electrode was used. Directional deep brain stimulation with a reduced electrode size applied intraoperatively in the subthalamic nucleus as well as in the nucleus ventralis intermedius of the thalamus significantly widened the therapeutic window and lowered the current needed for beneficial effects, compared to omnidirectional stimulation. The observed side effects related to direction of stimulation were consistent with the anatomical location of surrounding structures. This new approach opens the door to an improved deep brain stimulation therapy. Chronic implantation is further needed to confirm these findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuroinflammation has long been studied for its connection to the development and progression of Multiple Sclerosis. In recent years, the field has expanded to look at the role of inflammatory processes in a wide range of neurological conditions and cognitive disorders including stroke, amyotrophic lateral sclerosis, and autism. Researchers have also started to note the beneficial impacts of neuroinflammation in certain diseases. Neuroinflammation: New Insights into Beneficial and Detrimental Functions provides a comprehensive view of both the detriments and benefits of neuroinflammation in human health. Neuroinflammation: New Insights into Beneficial and Detrimental Functions opens with two chapters that look at some fundamental aspects of neuroinflammation in humans and rodents. The remainder of the book is divided into two sections which examine both the detrimental and beneficial aspects of inflammation on the brain, spinal cord and peripheral nerves, on various disease states, and in normal aging. These sections provide a broad picture of the role neuroinflammation plays in the physiology and pathology of various neurological disorders. Providing cross-disciplinary coverage, Neuroinflammation: New Insights into Beneficial and Detrimental Functions will be an essential volume for neuroimmunologists, neurobiologists, neurologists, and others interested in the field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep brain stimulation of different targets has been shown to drastically improve symptoms of a variety of neurological conditions. However, the occurrence of disabling side effects may limit the ability to deliver adequate amounts of current necessary to reach the maximal benefit. Computed models have suggested that reduction in electrode size and the ability to provide directional stimulation could increase the efficacy of such therapies. This has never been demonstrated in humans. In the present study, we assess the effect of directional stimulation compared to omnidirectional stimulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cytokine IL-1 mediates diverse forms of neurodegeneration, but its mechanism of action is unknown. We have demonstrated previously that exogenous and endogenous IL-1 acts specifically in the rat striatum to dramatically enhance ischemic and excitotoxic brain damage and cause extensive cortical injury. Here we tested the hypothesis that this distant effect of IL-1 is mediated through polysynaptic striatal outputs to the cortex via the hypothalamus. We show that IL-1β injected into the rat striatum with the excitotoxin α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA) caused increased expression of IL-1β (mRNA and protein) mainly in the cortex where maximum injury occurs. Marked increases in IL-1β mRNA and protein were also observed in the hypothalamus. S-AMPA, injected alone into the striatum, caused only localized damage, but administration of IL-1β into either the striatum or the lateral hypothalamus immediately after striatal S-AMPA resulted in widespread cell loss throughout the ipsilateral cortex. Finally we showed that the cortical cell death produced by striatal coinjection of S-AMPA and IL-1β was significantly reduced by administration of the IL-1 receptor antagonist into the lateral hypothalamus. These data suggest that IL-1β can act in the hypothalamus to modify cell viability in the cortex. We conclude that IL-1-dependent pathways project from the striatum to the cortex via the hypothalamus and lead to cortical injury, and that these may contribute to a number of human neurological conditions including stroke and head trauma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although tilt tables are used by physiotherapists to reintroduce patients to the vertical position, no quantitative evidence is available regarding their use within intensive care units (ICUs) of Australian hospitals. The purpose of this study was to evaluate the use of tilt tables in physiotherapy management of patients in ICUs across Australia. Ninety-nine physiotherapists working in Australian public ICUs were contacted via mail and asked to complete a questionnaire regarding their use of tilt tables in practice. Reasons for the use of the tilt table, contraindications, commonly used adjuncts, monitoring, and outcome measures were also investigated. Eighty-six questionnaires were returned (87% response). The tilt table was used by 58 physiotherapists (67.4%). The most common reasons for inclusion of tilt table treatment were to: facilitate weight bearing (94.8% of those who tilt); prevent muscle contractures (86%); improve lower limb strength (81%); and increase arousal (70%). The tilt table was most frequently applied to patients with neurological conditions (63.8%) and during long-term ICU stay (43.1%). Techniques often combined with tilt table treatment included upper limb exercises (93.1%) and breathing exercises (86.2%). Standing with assistance of the tilt table is used by the majority of physiotherapists working in Australian ICUs. A moderate level of agreement is demonstrated by physiotherapists regarding indications to commence tilt table treatment and adjunct modalities combined with standing with assistance of the tilt table.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The binocular Esterman visual field test (EVFT) is the current visual field test for driving in the UK. Merging of monocular field tests (Integrated Visual Field, IVF) has been proposed as an alternative for glaucoma patients. Aims: To examine the level of agreement between the EVFT and IVF for patients with binocular paracentral scotomata, caused by either ophthalmological or neurological conditions, and to compare outcomes with useful field of view (UFOV) performance, a test of visual attention thought to be important in driving. Methods: 60 patients with binocular paracentral scotomata but normal visual acuity (VA) were recruited prospectively. Subjects completed and were classified as “pass” or “fail” for the EVFT, IVF and UFOV. Results: Good agreement occurred between the EVFT and IVF in classifying subjects as “pass” or “fail” (kappa?=?0.84). Classifications disagreed for four subjects with paracentral scotomata of neurological origin (three “passed” IVF yet “failed” EVFT). Mean UFOV scores did not differ between those who “passed” and those who “failed” both visual field tests (p?=?0.11). Agreement between the visual field tests and UFOV was limited (EVFT kappa?=?0.22, IVF kappa 0.32). Conclusions: Although the IVF and EVFT agree well in classifying visual fields with regard to legal fitness to drive in the UK, the IVF “passes” some individuals currently classed as unfit to drive due to paracentral scotomata of non-glaucomatous origin. The suitability of the UFOV for assessing crash risk in those with visual field loss is questionable.