954 resultados para Neurodegenerative disorders


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional method of classifying neurodegenerative diseases is based on the original clinico-pathological concept supported by 'consensus' criteria and data from molecular pathological studies. This review discusses first, current problems in classification resulting from the coexistence of different classificatory schemes, the presence of disease heterogeneity and multiple pathologies, the use of 'signature' brain lesions in diagnosis, and the existence of pathological processes common to different diseases. Second, three models of neurodegenerative disease are proposed: (1) that distinct diseases exist ('discrete' model), (2) that relatively distinct diseases exist but exhibit overlapping features ('overlap' model), and (3) that distinct diseases do not exist and neurodegenerative disease is a 'continuum' in which there is continuous variation in clinical/pathological features from one case to another ('continuum' model). Third, to distinguish between models, the distribution of the most important molecular 'signature' lesions across the different diseases is reviewed. Such lesions often have poor 'fidelity', i.e., they are not unique to individual disorders but are distributed across many diseases consistent with the overlap or continuum models. Fourth, the question of whether the current classificatory system should be rejected is considered and three alternatives are proposed, viz., objective classification, classification for convenience (a 'dissection'), or analysis as a continuum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deposition of ß-amyloid (Aß ), a 'signature' pathological lesion of Alzheimer's disease (AD), is also characteristic of Down's syndrome (DS), and has been observed in dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). To determine whether the growth of Aß deposits was similar in these disorders, the size frequency distributions of the diffuse ('pre-amyloid'), primitive ('neuritic'), and classic ('dense-cored') A ß deposits were compared in AD, DS, DLB, and CBD. All size distributions had essentially the same shape, i.e., they were unimodal and positively skewed. Mean size of Aß deposits, however, varied between disorders. Mean diameters of the diffuse, primitive, and classic deposits were greatest in DS, DS and CBD, and DS, respectively, while the smallest deposits, on average, were recorded in DLB. Although the shape of the frequency distributions was approximately log-normal, the model underestimated the frequency of smaller deposits and overestimated the frequency of larger deposits in all disorders. A 'power-law' model fitted the size distributions of the primitive deposits in AD, DS, and DLB, and the diffuse deposits in AD. The data suggest: (1) similarities in size distributions of Aß deposits among disorders, (2) growth of deposits varies with subtype and disorder, (3) different factors are involved in the growth of the diffuse/primitive and classic deposits, and (4) log-normal and power-law models do not completely account for the size frequency distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. © 2014 The Author.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hippocampus (HC) and adjacent gyri are implicated in dementia in several neurodegenerative disorders. To compare HC pathology among disorders, densities of ‘signature’ pathological lesions were measured at a standard location in eight brain regions of 12 disorders. Principal components analysis of the data suggested that the disorders could be divided into three groups: (1) Alzheimer’s disease (AD), Down’s syndrome (DS), sporadic Creutzfeldt–Jakob disease, and variant Creutzfeldt–Jakob disease in which either β-amyloid (Aβ) or prion protein deposits were distributed in all sectors of the HC and adjacent gyri, with high densities being recorded in the parahippocampal gyrus and subiculum; (2) Pick’s disease, sporadic frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions, and neuronal intermediate filament inclusion disease in which relatively high densities of neuronal cytoplasmic inclusions were present in the dentate gyrus (DG) granule cells; and (3) Parkinson’s disease dementia, dementia with Lewy bodies, progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy in which densities of signature lesions were relatively low. Variation in density of signature lesions in DG granule cells and CA1 were the most important sources of neuropathological variation among disorders. Hence, HC and adjacent gyri are differentially affected in dementia reflecting either variation in vulnerability of hippocampal neurons to specific molecular pathologies or in the spread of pathological proteins to the HC. Information regarding the distribution of pathology could ultimately help to explain variations in different cognitive domains, such as memory, observed in various disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Editorial

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temporal lobe is a major site of pathology in a number of neurodegenerative diseases. In this chapter, the densities of the characteristic pathological lesions in various regions of the temporal lobe were compared in eight neurodegenerative disorders, viz., Alzheimer’s disease (AD), Down’s syndrome (DS), dementia with Lewy bodies (DLB), Pick’s disease (PiD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), sporadic Creutzfeldt-Jakob disease (sCJD), and neuronal intermediate filament inclusion disease (NIFID). Temporal lobe pathology was observed in all of these disorders most notably in AD, DS, PiD, sCJD, and NIFID. The regions of the temporal lobe affected by the pathology, however, varied between disorders. In AD and DS, the greatest densities of ?-amyloid (A?) deposits were recorded in cortical regions adjacent to the hippocampus (HC), DS exhibiting greater densities of A? deposits than AD. Similarly, in sCJD, greatest densities of prion protein (PrPsc) deposits were recorded in cortical areas of the temporal lobe. In AD and PiD, significant densities of neurofibrillary tangles (NFT) and Pick bodies (PB) respectively were present in sector CA1 of the HC while in CBD, the greatest densities of tau-immunoreactive neuronal cytoplasmic inclusions (NCI) were present in the parahippocampal gyrus (PHG). Particularly high densities of PB were present in the DG in PiD, whereas NFT in AD and Lewy bodies (LB) in DLB were usually absent in this region. These data confirm that the temporal lobe is an important site of pathology in the disorders studied regardless of their molecular ‘signature’. However, disorders differ in the extent to which the pathology spreads to affect the HC which may account for some of the observed differences in clinical dementia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neuronal oscillations are thought to underlie interactions between distinct brain regions required for normal memory functioning. This study aimed at elucidating the neuronal basis of memory abnormalities in neurodegenerative disorders. Magnetoencephalography (MEG) was used to measure oscillatory brain signals in patients with Alzheimer s disease (AD), a neurodegenerative disease causing progressive cognitive decline, and mild cognitive impairment (MCI), a disorder characterized by mild but clinically significant complaints of memory loss without apparent impairment in other cognitive domains. Furthermore, to help interpret our AD/MCI results and to develop more powerful oscillatory MEG paradigms for clinical memory studies, oscillatory neuronal activity underlying declarative memory, the function which is afflicted first in both AD and MCI, was investigated in a group of healthy subjects. An increased temporal-lobe contribution coinciding with parieto-occipital deficits in oscillatory activity was observed in AD patients: sources in the 6 12.5 Hz range were significantly stronger in the parieto-occipital and significantly weaker in the right temporal region in AD patients, as compared to MCI patients and healthy elderly subjects. Further, the auditory steady-state response, thought to represent both evoked and induced activity, was enhanced in AD patients, as compared to controls, possibly reflecting decreased inhibition in auditory processing and deficits in adaptation to repetitive stimulation with low relevance. Finally, the methodological study revealed that successful declarative encoding and retrieval is associated with increases in occipital gamma and right hemisphere theta power in healthy unmedicated subjects. This result suggests that investigation of neuronal oscillations during cognitive performance could potentially be used to investigate declarative memory deficits in AD patients. Taken together, the present results provide an insight on the role of brain oscillatory activity in memory function and memory disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is strong evidence for the involvement of alpha-synuclein in the pathologies of several neurodegenerative disorders, including PD (Parkinson's disease). Development of disease appears to be linked to processes that increase the rate at which alpha-synuclein forms aggregates. These processes include increased protein concentration (via either increased rate of synthesis or decreased rate of degradation), and altered forms of alpha-synuclein (such as truncations, missense mutations, or chemical modifications by oxidative reactions). Aggregated forms of the protein are toxic to cells and one therapeutic strategy would be to reduce the rate at which aggregation occurs. To this end we have designed several peptides that reduce alpha-synuclein aggregation. A cell-permeable version of one such peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-synuclein (A53T), a familial PD-associated mutation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tese de doutoramento, Bioquímica (Biotecnologia), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Copper is an essential element for the activity of a number of physiologically important enzymes. Enzyme-related malfunctions may contribute to severe neurological symptoms and neurological diseases: copper is a component of cytochrome c oxidase, which catalyzes the reduction of oxygen to water, the essential step in cellular respiration. Copper is a cofactor of Cu/Zn-superoxide-dismutase which plays a key role in the cellular response to oxidative stress by scavenging reactive oxygen species. Furthermore, copper is a constituent of dopamine-β-hydroxylase, a critical enzyme in the catecholamine biosynthetic pathway. A detailed exploration of the biological importance and functional properties of proteins associated with neurological symptoms will have an important impact on understanding disease mechanisms and may accelerate development and testing of new therapeutic approaches. Copper binding proteins play important roles in the establishment and maintenance of metal-ion homeostasis, in deficiency disorders with neurological symptoms (Menkes disease, Wilson disease) and in neurodegenerative diseases (Alzheimer’s disease). The Menkes and Wilson proteins have been characterized as copper transporters and the amyloid precursor protein (APP) of Alzheimer’s disease has been proposed to work as a Cu(II) and/or Zn(II) transporter. Experimental, clinical and epidemiological observations in neurodegenerative disorders like Alzheimer’s disease and in the genetically inherited copper-dependent disorders Menkes and Wilson disease are summarized. This could provide a rationale for a link between severely dysregulated metal-ion homeostasis and the selective neuronal pathology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Apoptosis is an important contributing factor during neuronal death in a variety of neurodegenerative disorders, including multiple sclerosis, Parkinson's disease and sciatic nerve injury. Whereas several clinical and preclinical studies have focused on the neuroprotective effects of caspase inhibitors, their clinical benefits are still unclear. Here, we discuss novel alternative strategies to protect neuronal cells from apoptotic death using members of the inhibitors of apoptosis (IAP) family. We specifically review the different roles of survivin, which is an important member of the IAP family that serves a dual role in the inhibition of apoptosis as well as a vital role in mitosis and cell division. Due to the various roles of survivin during cell division and apoptosis, targeting this protein illustrates a new therapeutic window for the treatment of neurodegenerative diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human health is severely hampered by a majority of the neurological disorders such as the brain tumors, degenerative Alzheimer's disease, Parkinson's disease and those involving inflammatory component. Owing to the stringent protection offered by the blood brain barrier, conventional therapeutics gain limited access and therefore, are therapeutically suboptimal. Hence, research has now focused to develop the novel drug delivery systems with a prime motto of maintaining therapeutic drug levels inside the brain, avoiding non-specific tissue distribution. The introduction of nanotechnology has addressed few of these objectives and opened up new avenues for even more improvization. To some extent, nanodelivery systems were successful in crossing the blood brain barrier and accessing the remote areas of the brain. They also have shown tremendous potential in delivering the therapeutic and diagnostic aids following systemic administration. What revolutionised the nano applications is the development of "smart" nanosystems, whose surface is tailor made for the effective theranostic delivery. However, a detailed understanding of the long term nanoformulation toxicities, along with the neuropathology, is the critical future question to be addressed. In this review, a brief introduction of the prominent neurological disorders and detailed applications of nanotechnology are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB) separate the brain and the spinal cord from the circulating blood and are important for the maintenance of the CNS homeostasis. They build a physical barrier thereby protecting the CNS from pathogens and toxic agents, and their disruption plays a crucial role in the pathogenesis of several CNS disorders. In this thesis, the blood-CNS-barriers were studied via in vitro models in two case studies for neurodegenerative disorders, in particular Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). The first model evaluates treatment possibilities of AD using nanotechnology-based strategies. Since the toxic amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of AD, reduced generation or enhanced clearance of Aβ42 peptides are expected to modify the disease course in AD. Therefore, several Aβ42-lowering drugs like flurbiprofen had been tested in clinical trials, but most of them failed due to their low brain penetration. Here, flurbiprofen was embedded in polylactide (PLA) nanoparticles and its transport was examined in an in vitro BBB model. The embedding of flurbiprofen into the nanoparticles disguised its cytotoxic potential and enabled the administration of higher drug concentrations which resulted in a sufficient transport of the drug across an endothelial cell monolayer. These results demonstrate that non-permeable drugs can be transported efficiently via nanoparticles and that these nanotechnology-based strategies are a promising tool to generate novel therapeutic options for AD and other CNS diseases. rnThe focus of the second project was to investigate the impaired integrity of the BSCB in a mouse model for ALS. About 20% of all familial ALS cases are associated with missense mutations or small deletions in the gene that encodes Cu/Zn-superoxide dismutase 1 (SOD1). To date, the molecular mechanisms resulting in ALS are still unknown, but there is evidence that the disruption of the BSCB is one of the primary pathological events. In both familial and sporadic ALS patients, loss of endothelial integrity and endothelial cell damage was observed, and studies with SOD1 transgenic mice demonstrated that the BSCB disruption was found prior to motor neuron degeneration and neurovascular inflammation. Thus, an in vitro model for ALS endothelial cells was generated which exhibited comparable integrity characteristics and tight junction (TJ) protein expression profiles as isolated primary endothelial cells of the BSCB of SOD1 transgenic mice. In this, an alteration of the βcat/AKT/FoxO1 pathway, which regulates the expression of the TJ protein claudin-5, could be observed. These data furthermore indicate that ALS is a neurovascular disease, and understanding of the primary events in ALS pathogenesis will hopefully provide ideas for the development of new therapeutic strategies. rn

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Selective dorsal rhizotomy at the lumbar level is a neurosurgical procedure, which reduces spasticity in the legs. Its effect has mainly been studied in children with spastic cerebral palsy. Little is known about the outcome of selective dorsal rhizotomy in patients with neurodegenerative disorders. We report the clinical course after selective dorsal rhizotomy in 2 patients with progressive spasticity. Leg spasticity was effectively and persistently reduced in both patients, facilitating care and improving sitting comfort. However, spasticity of the arms and other motor disturbances, such as spontaneous extension spasms and the ataxia, increased gradually in time. Selective dorsal rhizotomy leads to a disappearance of leg spasticity in patients with a neurodegenerative disease. Other motor signs are not influenced and may increase due to the progressive nature of the underlying disease.