894 resultados para Nano-powders


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there has been significant effort in the synthesis of nanocrystalline spinel ferrites due to their unique properties. Among them, zinc ferrite has been widely investigated for countless applications. As traditional ferrite synthesis methods are energy- and time-intensive, there is need for a resource-effective process that can prepare ferrites quickly and efficiently without compromising material quality. We report on a novel microwave-assisted soft-chemical synthesis technique in the liquid medium for synthesis of ZnFe2O4 powder below 100 °C, within 5 min. The use of β-diketonate precursors, featuring direct metal-to-oxygen bonds in their molecular structure, not only reduces process temperature and duration sharply, but also leads to water-soluble and non-toxic by-products. As synthesized powder is annealed at 300 °C for 2 hrs in a conventional anneal (CA) schedule. An alternative procedure, a 2-min rapid anneal at 300 °C (RA) is shown to be sufficient to crystallize the ferrite particles, which show a saturation magnetization (MS) of 38 emu/g, compared with 39 emu/g for a 2-hr CA. This signifies that our process is efficient enough to reduce energy consumption by ∼85% just by altering the anneal scheme. Recognizing the criticality of anneal process to the energy budget, a more energy-efficient variation of the reaction process was developed, which obviates the need for post-synthesis annealing altogether. It is shown that the process also can be employed to deposit crystalline thin films of ferrites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A green colored nano-pigment Y2BaCuO5 with impressive near infra-red (NIR) reflectance (61% at 1100 nm) was synthesized by a nano-emulsion method. The developed nano-crystalline powders were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-vis-NIR diffuse reflectance spectroscopy and CIE-L*a*b* 1976 color scales. The XRD and Rietveld analyses of the designed pigment powders reveal the orthorhombic crystal structure for Y2BaCuO5, where yttrium is coordinated by seven oxygen atoms with the local symmetry of a distorted trigonal prism, barium is coordinated by eleven oxygen atoms, and the coordination polyhedron of copper is a distorted square pyramid CuO5]. The UV-vis spectrum of the nano-pigment exhibits an intense d-d transition associated with CuO5 chromophore between 2.1 and 2.5 eV in the visible domain. Therefore, a green color has been displayed by the developed nano-pigment. The potential utility of the nano-pigments as ``Cool Pigments'' was demonstrated by coating on to a building roofing material like cement slab and PVC coatings. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retaining the morphology of gallium oxide nanostructures during structural transformations or after doping with lanthanide ions is not facile. Here we report on the sonochemical synthesis of nearly monodisperse similar to 550 nm long nano-spindles of undoped and La-doped alpha-GaOOH. The transformation of as-prepared undoped and La-doped alpha-GaOOH powders into the corresponding undoped and La-doped Ga2O3 phases (alpha and beta) was achieved by carrying out controlled annealing at elevated temperatures under optimized conditions. The formation of gallium oxide nano-spindles is explained by invoking the phenomenon of oriented attachment, as amply supported by electron microscopy. Interestingly, the morphology of the gallium oxide nano-spindles remained conserved even after doping them with more than 1.4 at% of La3+ ions. Such robust structural stability could be attributed to the oriented attachment-type growth observed in the nano-spindles. The as-prepared samples and the corresponding annealed ones were thoroughly characterized by powder X-ray diffraction (PXRD), electron microscopy (SEM, TEM, and STEM-EDS) and X-ray photoelectron spectroscopy (XPS). Finally, photoluminescence from the single-crystalline undoped and La-doped beta-Ga2O3 was explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel nano-scaled bulk hard material (W0.5Al0.5)C-Co with "rounded" grains was prepared by nanocrystalline "rounded" (W0.5Al0.5)C powders with "rounded" particle shape in this study. The nano-scaled "rounded" particles do not contain sharp edges, which form local tensile stress concentrations on loading of the composite, thus leading to improved toughness and reduced sensitivity to crack. Nanocrystalline (W0.5Al0.5)C powders with "rounded" particle shape were used as starting materials. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate a novel and efficient route by which the shape-controlled synthesis of t-Se nano/microstructures including nanowires, nanorods, nanobelts, microtubes, and flowers, as well as uniform spheres of a-Se, can be readily realized based on solution-mediated heat treatment with commercially available Se powders. X-ray diffraction (XRD), energy-dispersive X-ray spectra (EDS), Raman spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques were used to characterize the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method of grafting ring-opening polymerization of L-lactide (LLA) onto the surface of hydroxyapatite nano-particles (n-HAP) was developed. PLLA was directly connected onto the HAP surface through a chemical linkage. The PLLA-g-HAP particles could be stably dispersed in organic solvent such as chloroform for several weeks. The n-HAP particles still retained the original dimension and shape after the grafting of PLLA. Compared with the P-31 MAS-NMR spectrum of pure HAP powders, there appeared a downfield displacement of 1.2 ppm in the spectrum of PLLA-g-HAP. Fourier transformation infrared (FT-IR) spectra further confirmed the existence of PLLA on the surface of PLLA-g-HAP. The amount of grafted polymer determined by thermal gravimetric analysis (TGA) was about 6% in weight. The tensile strength and elongation at break of the PLLA/PLLA-g-HAP composite containing 8 wt% of PLLA-g-HAP were 55 MPa and about 10-13%, respectively, while those of the PLLA/n-HAP composites were 40 MPa and 3-5%, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultra fine nickel ferrite have been synthesized by the sol-gel method. By heat treating different portions of the prepared powder separately at different temperatures, nano-sized particles of nickel ferrite with varying particle sizes were obtained. These powders were characterised by the X-ray diffraction and then incorporated in the nitrile rubber matrix according to a specific recipe for various loadings. The cure characteristics and the mechanical properties of these rubber ferrite composites (RFCs) were evaluated. The effect of loading and the grain size of the filler on the cure characteristics and tensile properties were also evaluated. It is found that the grain size and porosity of the filler plays a vital role in determining the mechanical properties of the RFCs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents and discusses some of the results of the effects of processing on rare earth-doped nanosize SnO2. Several relevant factors that may influence the characteristics of the final product are studied. The influence of two preparation routes and two heat-treatment conditions on the incorporation of dopants is investigated. The route whereby a soluble salt is used as the dopant source is found to provide the highest degree of dopant incorporation, even under the least favorable heat-treatment conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradable nanoparticles have been widely explored as carriers for controlled delivery of therapeutic molecules; however, studies describing the development of nanoparticles as carriers for biopesticide products are few. In this work, a new method to prepare nanoparticles loaded with neem (Azadirachta indica) extracts is presented. In this study, nanoparticles were formulated as colloidal suspension and (spray-dried) powder and characterized by evaluating pH, particle size, zeta potential, morphology, absolute recovery, and entrapment efficiency. A high-performance liquid chromatography method was used for nanoparticle characterization. The best formulations presented absolute recovery and entrapment efficiencies of approximately 100% and a release profile based on swelling and relaxation of the polymer or polymer erosion. The biological data of the formulated products against Plutella xylostella showed 100% larval mortality. The nanoparticle information improved the stability of neem products against ultraviolet radiation and increased their dispersion in the aqueous phase. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Attempts to strengthen a chromium-modified titanium trialuminide by a combination of grain size refinement and dispersoid strengthening led to a new means to synthesize such materials. This Reactive Mechanical Alloying/Milling process uses in situ reactions between the metallic powders and elements from a process control agent and/or a gaseous environment to assemble a dispersed small hard particle phase within the matrix by a bottom-up approach. In the current research milled powders of the trialuminide alloy along with titanium carbide were produced. The amount of the carbide can be varied widely with simple processing changes and in this case the milling process created trialuminide grain sizes and carbide particles that are the smallest known from such a process. Characterization of these materials required the development of x-ray diffraction means to determine particle sizes by deconvoluting and synthesizing components of the complex multiphase diffraction patterns and to carry out whole pattern analysis to analyze the diffuse scattering that developed from larger than usual highly defective grain boundary regions. These identified regions provide an important mass transport capability in the processing and not only facilitate the alloy development, but add to the understanding of the mechanical alloying process. Consolidation of the milled powder that consisted of small crystallites of the alloy and dispersed carbide particles two nanometers in size formed a unique, somewhat coarsened, microstructure producing an ultra-high strength solid material composed of the chromium-modified titanium trialuminide alloy matrix with small platelets of the complex carbides Ti2AlC and Ti3AlC2. This synthesis process provides the unique ability to nano-engineer a wide variety of composite materials, or special alloys, and has shown the ability to be extended to a wide variety of metallic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Inhalation of ambient air particles or engineered nanoparticles (NP) handled as powders, dispersions or sprays in industrial processes and contained in consumer products pose a potential and largely unknown risk for incidental exposure. For efficient, economical and ethically sound evaluation of health hazards by inhaled nanomaterials, animal-free and realistic in vitro test systems are desirable. The new Nano Aerosol Chamber for in-vitro Toxicity studies (NACIVT) has been developed and fully characterized regarding its performance. NACIVT features a computer-controlled temperature and humidity conditioning, preventing cellular stress during exposure and allowing long-term exposures. Airborne NP are deposited out of a continuous air stream simultaneously on up to 24 cell cultures on Transwell® inserts, allowing high-throughput screening. In NACIVT, polystyrene as well as silver particles were deposited uniformly and efficiently on all 24 Transwell® inserts. Particle-cell interaction studies confirmed that deposited particles reach the cell surface and can be taken up by cells. As demonstrated in control experiments, there was no evidence for any adverse effects on human bronchial epithelial cells (BEAS-2B) due to the exposure treatment in NACIVT. The new, fully integrated and transportable deposition chamber NACIVT provides a promising tool for reliable, acute and sub-acute dose-response studies of (nano)particles in air-exposed tissues cultured at the air-liquid interface.