181 resultados para NALP3 INFLAMMASOME
Resumo:
IL-1beta is a cytokine with major roles in inflammation and innate immune responses. IL-1beta is produced as an inactive proform that must be cleaved within the cell to generate biologically active IL-1beta. The enzyme caspase-1 catalyzes the reaction. Recent work showed that caspase-1 must be activated by a complex known as the inflammasome. The inflammasome comprises NALP, which is an intracellular receptor involved in innate immunity, and an ASC adapter that ensures caspase-1 recruitment to the receptor. The most extensively described inflammasome to date is formed by the NALP3 receptor within monocytes. Mutations involving the NALP3 gene cause hereditary periodic fever syndromes in humans. Increased inflammasome activity responsible for uncontrolled IL-1beta production occurs in these syndromes. Inhibition of the IL-1beta pathway by IL-1 receptor antagonist (anakinra) is a highly effective treatment for inherited periodic fever syndromes. A major role for inflammasome activity in the development of gout attacks was established recently. Urate monosodium crystals are specifically detected via the NALP3 inflammasome, which results in marked IL-1beta overproduction and initiation of an inflammatory response. This finding opens up new possibilities for the management of gouty attacks.
Resumo:
Résumé II y a cinq ans, la découverte d'un nouveau domaine, le PYD domaine, lié aux domaines de la mort, a permis la description de la nouvelle famille des NALP protéines. L'analyse structurelle de cette famille de protéines révéla la présence de deux autres domaines, impliqués dans l'oligomerisation, NACHT, et la détection des ligands, Leucine rich repeats ou LRR. Cette architecture protéique est homologue à celle qui est décrite pour les NODs, les Tol1 récepteurs et tes protéines de résistance chez les plantes. Cette homologie suggère une possible implication des NALPs dans la régulation de l'immunité innée. Premièrement, nous avons décrit les composants minimaux qui permettent à l'inflammasomeNALP3 d'activer la caspase pro-inflammatoire, caspase-1. En comparaison à NALP1, NALP3 ne contient pas de FIIND domaine, ni de CARD domaine en C-terminus et n'interagit pas avec caspase-5. Nous avons découvert une protéine très homologue au C-terminus de NALP1, Cardinal, qui se lie au NACHT domaine de NALP2 et NALP3 par l'intermédiaire de son FIIND domaine. Cardinal possède la capacité d'interagir avec caspase-l, mais seul ASC semble être nécessaire à la maturation de la prointerleukine-1β suite à la stimulation de NALP3. Deuxièmement, notre étude s'est concentrée sur la nature du stimulus capable d'induire la formation et l'activation de l'inflammasome-NALP3. Nous avons démontré que l'ajout de muramyl dipeptide (MDP), produit à partir de la digestion enzymatique de peptidoglycaris bactériens, induit à la fois l'expression de la proIL-1β par la voie NOD2 et sa maturation en IL-1β active par la voie NALP3. Bien que le MDP active l'inflammasome-NALP3, il est incapable d'induire la sécrétion de l'IL-1β mature dans la lignée cellulaire THP1, comparé aux monocytes primaires humains. Cette différence pourrait être liée à l'absence, dans les THP1, de la protéine Filamin, qui est proposée d'interagir avec Cardinal. L'implication de NALP3 dans la maturation de l'IL-lb est confirmée suite à la découverte de mutations sur le gène CIAS1/NALP3/cryopyrin associées à trois maladies auto-inflammatoires : le syndrome de Muckle-Wells (MWS), l'urticaire familial au froid (FCU) et le syndrome CINCA/NOMID. Une élévation constitutive de la maturation et de la sécrétion de la proIL-1β en absence de stimulation MDP est détectée dans les macrophages des patients Muckle-Wells. En conclusion, nos études ont démontré que l'inflammasome-NALP3 doit être finement régulé pour éviter une activité incontrôlée qui représente la base moléculaire des symptômes associés aux syndromes auto-inflammatoires liés à NALP3. Summary Five years ago, the description of the NALP family originated from the discovery of a new death-domain fold family, the PYD domain. NALP contains aprotein-protein interaction domain (PYD), an oligomerization domain (NACHT) and a ligand-sensing domain, leucine rich repeats or LRR. This protein architecture shares similarity with receptors involved in immunity, such as NODS, Toll receptors (TLRs) and related plant resistance proteins, and points to an important role of NALPs in defense mechanisms. We first described the minimal complex involved in the pro-inflammatory Interleukin-1beta (IL-1β) cytokine maturation, called the inflammasome, which contains NALP3. In contrast to NALP1, NALP3, like other members of the NALP family, is devoid of C-terminal FIIND and CARD domains and does not interact with the pro-inflammatory caspase-5. Interestingly, a homolog of the C-terminal portion of NALP1 was found in the human genome and was named Cardinal. We found that NALP2 and NALP3 interact with the CARD-containing proteins Cardinal. Cardinal is able to bind to caspase-1 but is not required for IL-1β maturation through NALP3 activation, as demonstrated for the adaptor ASC. Secondly, our study focused on the stimuli involved in the activation of the NALP3 inflammasome. MDP was shown to induce the expression of proIL1β through NOD2 and then the maturation into active IL-1β by activation of the NALP3 inflammasome. However, in the monocytic THP1 cell line, secretion of IL-1β upon MDP stimulation seems to be independent of the inflammasome activation compared to human primary monocytes. This difference might be linked to a Cardinal-interacting protein, filamin. Until now, the role of Cardinal and filamin is still unknown and remains to be elucidated. Finally, mutations in the NALP3/cryopyrin/CIAS1 gene are associated with three autoinflammatory diseases: Muckle-Wells syndrome, familial cold autoinflammatory syndrome, and CINCA. Constitutive, elevated IL-1β maturation and secretion, even in the absence of MDP stimulation, was observed in macrophages from Muckle-Wells patients and confirmed a key role for the NALP3 inflammasome in innate immunity In conclusion, our studies describes the formation of the NALP3 inflammasome and suggests that this complex has to be tightly regulated to avoid an increased deregulated inflammasome activity that is the molecular basis for the symptoms associated with NALP3-dependent autoinflammatory disorders.
Resumo:
Inflammasome-mediated IL-1beta production is central to the innate immune defects that give rise to certain autoinflammatory diseases and may also be associated with the generation of IL-17-producing CD4(+) T (Th17) cells that mediate autoimmunity. However, the role of the inflammasome in driving adaptive immunity to infection has not been addressed. In this article, we demonstrate that inflammasome-mediated IL-1beta plays a critical role in promoting Ag-specific Th17 cells and in generating protective immunity against Bordetella pertussis infection. Using a murine respiratory challenge model, we demonstrated that the course of B. pertussis infection was significantly exacerbated in IL-1R type I-defective (IL-1RI(-/-)) mice. We found that adenylate cyclase toxin (CyaA), a key virulence factor secreted by B. pertussis, induced robust IL-1beta production by dendritic cells through activation of caspase-1 and the NALP3-containing inflammasome complex. Using mutant toxins, we demonstrate that CyaA-mediated activation of caspase-1 was not dependent on adenylate cyclase enzyme activity but was dependent on the pore-forming capacity of CyaA. In addition, CyaA promoted the induction of Ag-specific Th17 cells in wild-type but not IL-1RI(-/-) mice. Furthermore, the bacterial load was enhanced in IL-17-defective mice. Our findings demonstrate that CyaA, a virulence factor from B. pertussis, promotes innate IL-1beta production via activation of the NALP3 inflammasome and, thereby, polarizes T cell responses toward the Th17 subtype. In addition to its known role in subverting host immunity, our findings suggest that CyaA can promote IL-1beta-mediated Th17 cells, which promote clearance of the bacteria from the respiratory tract.
Resumo:
Summary Interleukin-1beta (IL-1beta) is a potent inflammatory cytokine, which is implicated in acute and chronic inflammatory disorders. The activity of IL-1beta is regulated by the proteolytic cleavage of its inactive precursor resulting in the mature, bioactive form of the cytokine. Cleavage of the IL-1beta precursor is performed by the cysteine protease caspase-1, which is activated within protein complexes termed 'inflammasomes'. To date, four distinct inflammasomes have been described, based on different core receptors capable of initiating complex formation. Both the host and invading pathogens need to control IL-1beta production and this can be achieved by regulating inflammasome activity. However, we have, as yet, little understanding of the mechanisms of this regulation. In particular the negative feedbacks, which are critical for the host to limit collateral damage of the inflammatory response, remain largely unexplored. Recent exciting findings in this field have given us an insight into the potential of this research area in terms of opening up new therapeutic avenues for inflammatory disorders.
Resumo:
Summary : The purpose of this study was to investigate the role of the inflammasome in human and experimental murine models (such as ΑΙΑ and K/BxN) of rheumatoid arthritis (RA)RA, affecting 1% of the population is the most frequent inflammatory disease characterized by synovial hyperplasia and cartilage and bone erosion, leading to joint destruction. In general, women are 3 times more affected by RA suggesting a role of estrogen in this disease. The inflammasome is a multiproteic complex triggering the activation of caspase-1 leading to the activation of IL-1 β, an important pro-inflammatory cytokine implicated in arthritis. The inflammasome has been implicated in several inflammatory diseases and particularly in gout. To highlight a possible role of the inflammasome in murine arthritis, we obtained ASC, caspase-1 and NALP3 +/+ and -/- littermate mice to perform ΑΙΑ and K/BxN arthritis. NALP3 -/- and caspase-1 -/- mice were as arthritic as wild type littermate mice in both ΑΙΑ and K/BxN models implicating that the NALP3 inflammasome is not involved in experimental arthritis. By contrast, ΑΙΑ severity was significantly diminished in ASC- deficient male and female mice, and in the K/BxN model, in ASC-deficient female mice. These results were supported by histological scoring and acute phase protein serum amyloid A (SAA) levels that were equivalent between NALP+/+ and NALP3-/- mice and diminished in ASC -/- mice. In ΑΙΑ and K/BxN murine experimental models, we observed a sexdependent phenotype. We studied the role of estradiol in both the ALA and the K/BxN models. Castrated female or male ASC -/- mice that received estradiol had a decreased arthritis severity. This implies a protective role of estrogen in the absence of ASC. In the ΑΙΑ model, proliferation assay were performed using splenocytes from mBSA- immunized ASC +/+ and -/- mice. The mBSA-induced proliferation was significantly lower in ASC-/- splenocytes. Moreover the CD3-specific proliferation of purified splenic Τ cells was significantly lower in ASC-/- cells. Finally, Τ cells from ASC-/- mice produced significantly decreased levels of IFN-gamma associated with increased levels of IL-10. These results imply a possible role of ASC in the TCR-signaling pathway and Τ cell cytokine production. In parallel the expression of the different inflammasome components were analyzed in biopsies from rheumatoid arthritis (RA) and osteoarthritis (OA) patiens. The expression of the 14 different NALPs, their effector protein ASC, and caspase-1 and -5 was readily measurable by RT-PCR in a similar proportion in RA and OA synovial samples, with the exception of NALP-5 and NALP-13, which weren't found in samples from either disease. The corresponding NALP1, -3, -12 and ASC proteins were expressed at similar levels in both OA and RA biopsies, as determined by immunohistochemistry and Western-blot analysis. By contrast, caspase-1 levels were significantly enhanced in RA synovial tissues compared to those from OA patients. NALP-1, -2, -3, -10, -12 and -14, as well as ASC, caspase-1, and -5 were detected in RNA from unstimulated and stimulated RA synoviocytes. In FLS, only ASC and caspase-1 were expressed at the protein level. NALP1, 3 and 12 were not detected. However, upon stimulation, no secreted IL-Ιβ was detectable in either RA or in OA synoviocytes culture medium. Résumé : Le but de ce projet était d'étudier le rôle de l'inflammasome dans des modèles expérimentaux d'arthrite tels que les modèles ΑΙΑ et K/BxN ainsi que dans la polyarthrite humaine (RA). La polyarthrite est une maladie inflammatoire très fréquente avec 1 % de la population affectée et touche 3 fois plus les femmes que les hommes, suggérant un rôle des hormones sexuelles dans cette pathologie. L'inflammasome est un complexe multiprotéique qui permet l'activation de la caspase-1, une cystéine protéase qui va ensuite cliver et activer rinterleukine-ΐβ (IL-Ιβ). L'inflammasome a été impliqué ces dernières années dans de nombreuses maladies inflammatoires notamment dans la goutte. Pour mettre en évidence un éventuel rôle de l'inflammasome dans l'arthrite expérimentale nous avons obtenu des souris déficientes pour certains des composants de l'inflammasome tels que ASC, NALP3 et caspase-1. Les souris NALP3 déficientes et caspase-1 déficientes sont aussi arthritiques que les souris wild type correspondantes que ce soit dans le modèle ΑΙΑ ou K/BxN. Par contre les souris mâles et femelles ASC-déficientes sont moins arthritiques que les souris +/+ correspondantes dans le modèle ΑΙΑ. Dans le modèle KRN, le même phénotype (diminution de la sévérité de l'arthrite) est observé uniquement chez les femelles ASC-/- Ce phénotype est corrélé avec l'histologie ainsi qu'avec le dosage du serum amyloid A (SAA) qui reflète l'inflammation systémique et qui est diminué chez les souris ASC-déficientes. Nous avons ensuite étudié le rôle de Γ estradiol (une des formes active des estrogènes) dans les modèles K/BxN et ΑΙΑ. Les souris castrées maies ou femelles déficientes pour ASC ayant reçu de l'estradiol ont une arthrite moins sévère ce qui implique que les estradiol ont un effet protecteur en l'absence de ASC. Dans le modèle ΑΙΑ, nous nous sommes aussi intéressés à la réponse immune. Des tests de prolifération ont été effectués sur des splénocytes en présence de mBSA (qui est l'antigène utilisé dans le modèle ΑΙΑ). Les splénocytes ASC -/- ont une proliferation qui est diminuée en présence de l'antigène. De plus la proliferation de cellules Τ spléniques purifiées en présence d'anti-CD3 est diminuée chez les cellules Τ ASC-/-. Ces résultats nous indiquent une éventuelle implication de ASC dans la signalisation par le récépteur des cellules T. En parallèle l'expression des différents composants de l'inflammasome a été analysée dans des biopsies de patients atteints de polyarthrite rhumatoide (RA) et d'arthrose (OA). L'expression des 14 différents NALPs, de l'adaptateur ASC, ainsi que des caspase-1 et -5 était similaires dans les échantillons RA et OA, à l'exception de NALP5 et 13 qui n'étaient pas détéctables. L'expression protéique de NALP1, 3, 12 et ASC effectuée par Western blot et immunohistochimie était similaire dans les biopsies RA et OA. Par contre la quantité de la caspase-1 mesurée par ELISA était augmentée de façon significative dans les extraits protéiques de biopsies RA. NALP-1, -2. -3, -10, -12, and -14 ainsi que ASC, caspase-1 et -5 étaient exprimés de façon similaire par les synoviocytes RA non stimulés et stimulés. Dans les synoviocytes seuls ASC et caspase-1 étaient détéctable au niveau protéique. NALP-1, -3 et -12 n'était pas détéctables. Cependant après stimulation il n'y avait d'IL-Ιβ sécrété que ce soit dans les surnageants de cultures de synoviocytes RA ou OA.
Resumo:
The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-gamma (IFN-gamma)-producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X(7) purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1beta (IL-1beta). The priming of IFN-gamma-producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3(-/-)) or caspase-1-deficient (Casp-1(-/-)) mice unless exogenous IL-1beta is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7(-/-) or Nlrp3(-/-) or Casp1(-/-) hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.
Resumo:
Objective Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)derived leukotriene B4 (LTB4) in driving tissue inflammation and hypernociception in a murine model of gout. Methods. Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1 beta (IL-1 beta), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB4 activity, cytokine (IL-1 beta, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. Results. Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophildependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1 beta/MyD88-dependent manner. LTB4 was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1 beta production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB4 after MSU crystal injection, and LTB4 was relevant in the MSU crystalinduced maturation of IL-1 beta. Mechanistically, LTB4 drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. Conclusion. These results reveal the role of the NLRP3 inflammasome in mediating MSU crystalinduced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB4 in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.
Resumo:
The involvement of inflammasome genes in the susceptibility to HIV-1 infection was investigated. Twelve single nucleotide polymorphisms within NLRP1, NLRP3, NLRC4, CARD8, CASP1, and IL1B genes were analyzed in 150 HIV-1-infected Brazilian subjects and 158 healthy controls. The 2 polymorphisms rs10754558 in NLRP3 and rs1143634 in IL1B were significantly associated to the HIV-1 infection. These findings supported the previously hypothesized involvement of NALP3-inflammasome in HIV-1 pathogenesis, underlining once more the key role of inflammation and innate immunity in the susceptibility to HIV-1 infection.
Resumo:
BACKGROUND/AIMS: After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS: Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS: Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS: Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury.
Resumo:
Summary : A large body of evidence indicates that the innate immune system plays a key role in host response to viral infection. Recently, Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptor receptors (NLRs) have emerged as key innate immune sensors of microbial products, eliciting intracellular signaling and leading to the production of chemokines, cytokines and interferons (IFNs) that shape innate immune responses and coordinate the development of adaptive immunity. Poxviruses are currently developed as vaccines vectors for infectious diseases such as HIV, tuberculosis and malaria. Modified vaccinia virus Ankara (MVA) and New York vaccinia virus (NWAC) are attenuated, replication deficient strains of poxvirus. The mechanisms underlying innate immune responses to MVA and NYVAC are poorly characterized. Thus, the objectives of the project were to determine the innate immune profile stimulated by poxviruses in innate immune cells and to evaluate the impact of modifications in the viral genome on MVA and NYVAC immunogenicity. MVA stimulated the production of abundant amounts of chemokines and IFNß but low levels of cytokines by human macrophages. In contrast, NYVAC weakly stimulated the production of all mediators. Interestingly, MVA and NYVAC strongly stimulated innate immune responses in vivo and in human whole blood, suggesting that a soluble factors}, possibly a complement component, was required for optimal activation of innate immune cells by poxviruses. Modified MVA and NYVAC produced by single or multiple deletions of viral genes targeting crucial pathways of host innate immunity, and mutant poxviruses with limited replication capacity, increased the production of pro-inflammatory molecules by human whole blood. Gene expression profiling in human macrophages confirmed the increased immunologic stimulatory capacity of modified poxviruses. The pathways activated by MVA and NYVAC in innate immune cells were described by analysing the response of knockdown or shRNA transduced macrophages with impaired expression of TLRs and their adaptors (MyD8$ and TRIF), RLRs (RIG-I, MDA-5 and the adaptor IPS-1) and the NALP3 inflammasome composed óf the NLR NALP3, caspase-1 and ASC. These experiments revealed a critical role for TLR2-TLR6-MyD88 in the production of tFNß-independent chemokines and of MDA-5-IPS-1 in the production of IFNß and IFNßdependent chemokines. The transcription of the iL1b gene encoding for the IL-1ß cytokine was initiated through TLR2-MyD88, whereas the maturation and the secretion of IL-1ß were controlled by the NALP3 inflammasome. Finally, we analyzed the role of macrophage migration inhibitory factor (MIF), a mediator of inflammation and innate immune responses, in MVA infection. We observed that MVA infection increased MIF production by innate immune cells and that MIF deficiency impaired macrophage and dendritic cell responses (ie migration, maturation, cytokine and IFN production) to MVA infection in vitro and in vivo. Moreover, MIF-deficiency resulted in delayed anti-MVA specific antibody production in mice immunized with the virus. In conclusion, we demonstrate. that poxviruses can be modified genetically to improve their immunogenicity. We also report the first comprehensive analysis of poxvirus sensing by innate immune cells, showing that the TLR, RLR and NLR pathways play specific and coordinated roles in regulating cytokine, chemokine and IFN response to poxvirus infection. Finally, we show that MIF is an integral host component involved in innate and adaptive immune responses to MVA infection. The present findings provide important information relevant to the study of the pathogenesis of poxvirus infections and allow a better understanding of the immunogenic potential of vaccine vectors, which is required for the development of optimized modìfied pox-vaccine vectors.
Resumo:
The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
Resumo:
Background: Gouty arthritis is a painful inflammatory disease with a significant impact on patients' HRQoL. In gouty arthritis, the inflammatory response is initiated by interleukin-1b (IL-1b) release, due to activation of the NALP3 inflammasome by MSU crystals. Canakinumab, a fully human anti-IL-1b antibody has a long half-life and has been shown to control inflammation in gouty arthritis. This study evaluated changes in HRQoL in gouty arthritis patients following treatment with canakinumab or triamcinolone acetonide (TA).Methods: This was an 8-week, dose-ranging, multi-center, active controlled, single-blind study. Patients (>=18 to <=80 years) experiencing an acute gouty arthritis flare, refractory to or contraindicated to NSAlDs and/or colchicine, were randomized to canakinumab 10, 25, 50, 90, 150 mg sc or TA 40 mg im. HRQoL was assessed as an exploratory endpoint at baseline and different pre-specified time-points using patient reported outcomes evaluating general mental and physical component summary scores and subscale scores of SF-36® (acute version 2) and functional disability (HAQ-DI©). We report HRQoL results for canakinumab 150 mg, the dose that was selected for the Phase III studies.Results: Baseline assessments showed a major impact on the HRQoL during acute gouty arthritis. Compared to TA, canakinumab 150 mg showed greater improvements in SF-36® physical and mental component summary and subscale scores at 7 days post-dose.In the canakinumab 150 mg group, the most severe impairment at baseline was reported for physical functioning and bodily pain; levels of 41.5 and 36.0, respectively, which improved within 7 days to 80.0 and 72.2 (mean increases of 39.0 and 35.6) approaching levels of the general US population (84.2 and 75.2). 8 weeks post-dose patients reached levels of 86.1 and 86.6 (mean increases of 44.6 and 50.6 for physical functioning and bodily pain, respectively) and these were higher than levels seen in the general US population. This was in contrast to patients treated with TA, who showed less improvement within 7 days (mean increases of 23.3 and 21.3 for physical function and bodily pain, respectively). None of the scores reached levels of the general US population 8 weeks post-dose. Functional disability scores, as measured by the HAQ-DI© decreased in both treatment groupsConclusions: All canakinumab doses showed a rapid improvement in physical and mental well-being of gouty arthritis patients based on SF-36® scores, in particular the 150 mg dose. In contrast to the TA group, patients treated with canakinumab showed improvement within 7 days in physical function and bodily pain approaching levels of the general population. The 150 mg dose of canakinumab was selected for further development in Phase III studies.
Resumo:
Major progress has been made in the past decade in understanding the pathogenesis and treatment of gout. These advances include identification of the genetic and environmental risk factors for gout, recognition that gout is an important risk factor for cardiovascular disease, elucidation of the pathways regulating the acute gout attack and the development of novel therapeutic agents to treat both the acute and chronic phases of the disease. This review summarises these advances and highlights the research agenda for the next decade.
Resumo:
The inflammasome is an inducible cytoplasmic structure that is responsible for production and release of biologically active interleukin-1 (IL-1). A polymorphism in the inflammasome component NALP3 has been associated with decreased IL-1 levels and increased occurrence of vaginal Candida infection. We hypothesized that this polymorphism-induced variation would influence susceptibility to infertility. DNA was obtained from 243 women who were undergoing in vitro fertilization (IVF) and tested for a length polymorphism in intron 2 of the gene coding for NALP3 (gene symbol CIAS1). At the conclusion of testing the findings were analyzed in relation to clinical parameters and IVF outcome. The frequency of the 12 unit repeat allele, associated with maximal inflammasome activity, was 62.3% in cases of female infertility vs. 75.6% in cases where only the male partner had a detectable fertility problem (p = 0.0095). Conversely, the frequency of the 7 unit repeat allele was 28.9% in those with a female fertility problem, 17.0% in women with infertile males and 18.4% in idiopathic infertility (p = 0.0124). Among the women who were cervical culture-positive for mycoplasma the frequency of the 7 unit repeat was 53.7% as opposed to 19.5% in those negative for this infection (p < 0.0001). We conclude that the CIAS1 7 unit repeat polymorphism increases the likelihood of mycoplasma infection-associated female infertility. (C) 2009 Elsevier Ireland Ltd. All rights reserved.