1000 resultados para Números racionais não negativos
Resumo:
Nos últimos anos o conhecimento do professor tem vindo a ser reconhecido como um dos aspetos nucleares no, e para o, desenvolvimento do conhecimento matemático dos alunos. Atendendo a essa centralidade, a formação deverá focar-se onde é, efetivamente, necessária, de modo a potenciar um incremento do conhecimento dos alunos, pelo conhecimento (e práticas) dos professores. Sendo os números racionais um dos tópicos problemáticos para os alunos, é fundamental identificar quais as situações matematicamente (mais) críticas para os professores de modo que, pela formação facultada, possam deixar de o ser. Neste artigo, tendo por foco o conhecimento matemático do professor e as suas especificidades, discutimos alguns aspetos desse conhecimento de futuros professores sobre números racionais, em concreto o sentido de número racional, identificando as suas componentes mais problemáticas e equacionando alguns dos porquês em que se sustentam. Terminamos com algumas considerações sobre implicações para a formação de professores e responsabilidade dos seus formadores.
Resumo:
Neste artigo, vamos viajar no tempo e assistir ao nascimento do zero. (...) As origens da Matemática remontam a alguns milhares de anos antes das primeiras civilizações e derivaram da necessidade de contar objetos. Em primeiro lugar, foi necessário distinguir um objeto de muitos objetos (caçar um pássaro ou muitos pássaros). Com o passar do tempo, a linguagem desenvolveu-se para distinguir entre um, dois e muitos. Em seguida, um, dois, três e muitos. (...) O passo seguinte consistiu em agrupar objetos de forma a facilitar a contagem. (...) A verdade é que os antigos gostavam de contar com as partes do seu corpo. Os favoritos eram o 5 (uma mão), o 10 (as duas mãos) e o 20 (ambas as mãos e os pés). O sistema numérico de base 10 acabou por vingar em muitas culturas e isso refletiu-se no vocabulário que ainda hoje utilizamos. Em português, as palavras “onze”, “doze” e “treze” derivam do latim (undecim, duodecim e tredecim), significando “dez e um”, “dez e dois” e “dez e três”. (...) Os sistemas antigos de numeração não contemplaram o zero. A verdade é que ninguém precisava de registar “zero ovelhas” nem contar “zero aves”. Em vez de dizer “tenho zero lanças”, bastava afirmar “não tenho lanças”. Como não era preciso um número para expressar a falta de alguma coisa, não ocorreu a necessidade de atribuir um símbolo à ausência de objetos. (...) O sistema de numeração grego, tal como o egípcio, ignorou por completo o zero. O zero nasceu noutra zona do globo: no Oriente, concretamente, no Crescente Fértil do atual Iraque. O sistema de numeração babilónico era, de certa forma, invulgar. Os babilónios tinham um sistema sexagesimal, de base 60, e usavam apenas duas marcas para representar os seus números: uma cunha simples para representar o 1 e uma cunha dupla para representar o 10. (...) os babilónios tiveram uma excelente ideia: inventaram um sistema de numeração posicional, em que os números são representados por sequências de símbolos, sendo que o valor de cada símbolo depende da posição que ocupa nessa sequência. (...) Para os babilónios, o zero era um simples marca-lugar; um símbolo para uma casa em branco no ábaco. O zero não ocupava um lugar na hierarquia dos números; não tinha ainda assumido a sua posição estratégica na reta numérica como o número que separa os números positivos dos negativos. (...)
Resumo:
(...) Tal como os babilónios, os maias do México e da América Central criaram um sistema de numeração posicional. A diferença é que o sistema era vigesimal, de base 20. Os maias também recorriam ao zero para a escrita dos números e utilizavam dois tipos de dígitos (...) O sistema de numeração indiano acabou por evoluir de um sistema do tipo grego para um sistema do tipo babilónico (...) Os indianos encararam com naturalidade a existência de números negativos, bem como da reta numérica em que o zero assumia finalmente o estatuto de número com a posição estratégica de separar os números positivos dos negativos. (...) A própria palavra “zero” tem raízes hindu-árabes. O nome indiano para zero era sunya, que significava “vazio”. Os árabes transformaram-no em sifr. Por sua vez, os ocidentais adotaram uma designação que soasse a latim – zephirus, que é a raiz da nossa palavra “zero”. (...) No Ocidente, o medo do infinito e o horror ao vazio perpetuaram-se durante séculos. Partindo do universo pitagórico, Aristóteles e Ptolemeu defendiam um cosmos finito em extensão, mas cheio de matéria. O universo estava contido numa “casca de noz” revestida pela esfera das estrelas fixas. (...) A falta do zero não só impediu o desenvolvimento da Matemática no Ocidente como, indiretamente, introduziu alguma confusão no nosso calendário. Todos nos lembramos das dúvidas que surgiram com a viragem recente de século e milénio: deveríamos festejar a mudança de século e milénio na passagem de ano de 1999 para 2000 ou de 2000 para 2001? A resposta correta é a segunda opção e a justificação é simples: o nosso calendário não contempla o zero. (...) Com o Renascimento, o universo de casca de noz partiu-se, o vazio e o infinito ultrapassaram por completo os preconceitos da fundação aristotélica da Igreja e abriram caminho para um desenvolvimento notável da ciência e, em particular, da Matemática. O zero assumiu um papel chave no desenvolvimento de várias áreas da Matemática, entre elas destaca-se o cálculo diferencial e integral. O edifício matemático, que outrora tinha sido alicerçado partindo da necessidade de contar ovelhas e demarcar propriedades, erguia-se agora bem alto: as regras da Natureza podiam ser descritas por equações e a Matemática era a chave para desvendar os segredos do Universo. (...) O zero não pode ser ignorado. De facto, o zero está na base de muitos dos segredos do Universo, a desvendar neste novo milénio.
Resumo:
A temática das frações é provavelmente o assunto mais delicado no que diz respeito ao ensino da matemática inicial. Por terem múltiplas aplicações, contextos e sentidos, as frações pedem um ensino altamente especializado e esmerado. Há que modelar de forma cuidadosa o conceito de fração, fasear e ordenar os nós conceptuais ao longo dos anos e dosear o caráter abstrato/concreto dos exemplos e atividades. Muito se testou, teorizou e escreveu sobre esta temática. Este trabalho consiste num resumo alargado sobre o ensino das frações, documentado em literatura especializada e ilustrado através de exemplos concretos retirados de manuais do Singapore Math, um dos mais cotados métodos de ensino do mundo.
Resumo:
Este texto tem como propósito contribuir para a valorização, no seio da Educação Matemática, do desenvolvimento do conhecimento matemático dos futuros professores dos 1.º e 2.º ciclos, no contexto da formação inicial. Foco-me na emergência do número fracionário no contexto da divisão de números inteiros com a preocupação de aprofundar o sentido de número racional e a compreensão da divisão, conceitos estruturantes do programa de Matemática do Ensino Básico. O tópico programático “Números racionais”, além de ter fundamental importância no desenvolvimento matemático dos alunos do Ensino Básico, representa para muitos estudantes, futuros professores, uma grande dificuldade conceptual e didática. Justifica-se, portanto, que continue a ser-lhe dada muita atenção na formação inicial, além do desenvolvimento de estudos a ele inerentes. Com um exemplo de medida de uma grandeza, contextualizo a necessidade de criar o número fracionário e identifico o problema aritmético a ela associado. Assim, partindo de situações de partilha equitativa e de medida que envolvem variáveis discretas para enquadrar a operação divisão como modelo matemático, apresento a evolução do conceito de número ligada à superação da impossibilidade de, no universo dos números inteiros, determinar o quociente de um dividendo que não é múltiplo do divisor. O conceito de número fracionário aparece como instrumento da superação e ligado ao significado de fração enquanto quociente. Se este artigo contribuir para uma adequada articulação entre o desenvolvimento dos conhecimentos matemático e didático tão necessário ao ensino da Matemática satisfará o principal objetivo que me propus atingir.
Resumo:
O presente estudo partiu do problema “Como promover aprendizagens da Matemática e do Estudo do Meio numa perspetiva interdisciplinar, explorando o mundo real?”. Neste sentido, tem como objetivos: selecionar recursos e atividades que se revelem motivadoras para os alunos; demonstrar a relevância da inter-relação de diferentes conceitos e a importância da sua ligação com as vivências dos alunos; ativar o envolvimento dos alunos para a aprendizagem da Matemática através do Estudo do meio e de situações do mundo real; estimular a perceção do aluno da presença da Matemática nos conteúdos de Estudo do Meio; fomentar a compreensão da relação dos conteúdos de Matemática e estudo do Meio. Com este propósito formularam-se as seguintes questões: (1) Que tipo de atividades se poderão proporcionar de forma a motivar os alunos para os conteúdos do Estudo do Meio e da Matemática? (2) De que forma a exploração das situações/conceções do quotidiano poderá promover o envolvimento dos alunos na aprendizagem da Matemática e do Estudo do Meio? (3) De que forma o Ensino Experimental das Ciências numa perspetiva interdisciplinar pode contribuir para desenvolver tanto as competências conceptuais (fatores do ambiente: temperatura e humidade/OTD/números racionais), como capacidades de pensamento crítico e tomada de decisão inerente? Tendo em vista os objetivos do estudo, desenvolveram-se, com uma turma do 2º ano de escolaridade, quatro situações formativas, que envolveram as disciplinas de Matemática e Estudo do Meio. O domínio de conteúdos preponderante na área de Estudo do Meio foi À descoberta do Ambiente Natural, enquanto na Matemática os domínios predominantes foram Organização e tratamento de dados e Números e operações. Foram realizadas diversas atividades experimentais, onde os alunos tiveram um papel ativo na construção dos seus conhecimentos. A investigação segue uma metodologia qualitativa, centrando-se num estudo de caso, onde se caracteriza uma experiência interdisciplinar que envolveu as disciplinas de Matemática e Estudo do Meio. Os dados foram recolhidos pela professora investigadora através de gravações de vídeo e áudio, fotografias, trabalhos dos alunos e de registos da professora investigadora. Os resultados demonstraram como os alunos mobilizaram e apropriaram os conteúdos de Matemática e Estudo do Meio. Os dados, através da análise de conteúdo, parecem iv sugerir que houve uma evolução no desempenho dos alunos a vários níveis, nomeadamente: no trabalho cooperativo, no envolvimento da tarefa, nas interações estabelecidas e na motivação para a aprendizagem da Matemática e Estudo do Meio.
Resumo:
Dissertação para obtenção do Grau de Mestre em Ensino de Matemática
Resumo:
resumen del autor
Resumo:
Apresenta a revisão de tópicos de matemática elementar do ensino fundamental com visão do ensino superior. Na subunidade 1 são abordados os conceitos de conjuntos numéricos e algumas das propriedades inerentes à suas estruturas: números naturais, números inteiros, números racionais, números irracionais, números reais, intervalos reais e números complexos. A subunidade 2 engloba a definição dos conceitos de grandezas proporcionais: números direta e inversamente proporcionais, grandezas direta e inversamente proporcionais, regra de três simples, regra de três composta com resolução de problemas ilustrativos. Os exemplos resolvidos englobam a aplicação da regra de três simples e composta para grandezas direta e inversamente proporcionais.
Resumo:
The awareness of the difficulty which pupils, in general have in understanding the concept and operations with Rational numbers, it made to develop this study which searches to collaborate for such understanding. Our intuition was to do with that the pupils of the Education of Young and Adults, with difficulty in understanding the Rational numbers, feel included in the learning-teaching process of mathematics. It deals with a classroom research in a qualitative approach with analysis of the activities resolved for a group of pupils in classroom of a municipal school of Natal. For us elaborate such activities we accomplished the survey difficulties and obstacles that the pupils experience, when inserted in the learning-teaching process of the Rational numbers. The results indicate that the sequence of activities applied in classroom collaborated so that the pupils to overcome some impediments in the learning of this numbers
Resumo:
Na computação científica é necessário que os dados sejam o mais precisos e exatos possível, porém a imprecisão dos dados de entrada desse tipo de computação pode estar associada às medidas obtidas por equipamentos que fornecem dados truncados ou arredondados, fazendo com que os cálculos com esses dados produzam resultados imprecisos. Os erros mais comuns durante a computação científica são: erros de truncamentos, que surgem em dados infinitos e que muitas vezes são truncados", ou interrompidos; erros de arredondamento que são responsáveis pela imprecisão de cálculos em seqüências finitas de operações aritméticas. Diante desse tipo de problema Moore, na década de 60, introduziu a matemática intervalar, onde foi definido um tipo de dado que permitiu trabalhar dados contínuos,possibilitando, inclusive prever o tamanho máximo do erro. A matemática intervalar é uma saída para essa questão, já que permite um controle e análise de erros de maneira automática. Porém, as propriedades algébricas dos intervalos não são as mesmas dos números reais, apesar dos números reais serem vistos como intervalos degenerados, e as propriedades algébricas dos intervalos degenerados serem exatamente as dos números reais. Partindo disso, e pensando nas técnicas de especificação algébrica, precisa-se de uma linguagem capaz de implementar uma noção auxiliar de equivalência introduzida por Santiago [6] que ``simule" as propriedades algébricas dos números reais nos intervalos. A linguagem de especificação CASL, Common Algebraic Specification Language, [1] é uma linguagem de especificação algébrica para a descrição de requisitos funcionais e projetos modulares de software, que vem sendo desenvolvida pelo CoFI, The Common Framework Initiative [2] a partir do ano de 1996. O desenvolvimento de CASL se encontra em andamento e representa um esforço conjunto de grandes expoentes da área de especificações algébricas no sentido de criar um padrão para a área. A dissertação proposta apresenta uma especificação em CASL do tipo intervalo, munido da aritmética de Moore, afim de que ele venha a estender os sistemas que manipulem dados contínuos, sendo possível não só o controle e a análise dos erros de aproximação, como também a verificação algébrica de propriedades do tipo de sistema aqui mencionado. A especificação de intervalos apresentada aqui foi feita apartir das especificações dos números racionais proposta por Mossakowaski em 2001 [3] e introduz a noção de igualdade local proposta por Santiago [6, 5, 4]
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE