989 resultados para Mutation (Biologie)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or "indeterminate" 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase (MAPK) activation (either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wright-Fisher model is an Itô stochastic differential equation that was originally introduced to model genetic drift within finite populations and has recently been used as an approximation to ion channel dynamics within cardiac and neuronal cells. While analytic solutions to this equation remain within the interval [0,1], current numerical methods are unable to preserve such boundaries in the approximation. We present a new numerical method that guarantees approximations to a form of Wright-Fisher model, which includes mutation, remain within [0,1] for all time with probability one. Strong convergence of the method is proved and numerical experiments suggest that this new scheme converges with strong order 1/2. Extending this method to a multidimensional case, numerical tests suggest that the algorithm still converges strongly with order 1/2. Finally, numerical solutions obtained using this new method are compared to those obtained using the Euler-Maruyama method where the Wiener increment is resampled to ensure solutions remain within [0,1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geminivirus infectivity is thought to depend on interactions between the virus replication-associated proteins Rep or RepA and host retinoblastoma-related proteins (pRBR), which control cell-cycle progression. It was determined that the substitution of two amino acids in the Maize streak virus (MSV) RepA pRBR-interaction motif (LLCNE to LLCLK) abolished detectable RepA-pRBR interaction in yeast without abolishing infectivity in maize. Although the mutant virus was infectious in maize, it induced less severe symptoms than the wild-type virus. Sequence analysis of progeny viral DNA isolated from infected maize enabled detection of a high-frequency single-nucleotide reversion of C(601)A in the 3 nt mutated sequence of the Rep gene. Although it did not restore RepA-pRBR interaction in yeast, sequence-specific PCR showed that, in five out of eight plants, the C(601)A reversion appeared by day 10 post-inoculation. In all plants, the C(601)A revertant eventually completely replaced the original mutant population, indicating a high selection pressure for the single-nucleotide reversion. Apart from potentially revealing an alternative or possibly additional function for the stretch of DNA that encodes the apparently non-essential pRBR-interaction motif of MSV Rep, the consistent emergence and eventual dominance of the C(601)A revertant population might provide a useful tool for investigating aspects of MSV biology, such as replication, mutation and evolution rates, and complex population phenomena, such as competition between quasispecies and population turnover. © 2005 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant human papillomavirus (HPV) virus-like particles (VLPs) made from the major capsid protein L1 are promising vaccine candidates for use as vaccines against genital and other HPV infections, and particularly against HPV-16. However, HPV-16 genotype variants have different binding affinities for neutralising mouse Mabs raised against HPV-16 L1 VLPs. This paper analyses, using a panel of well-characterised Mabs, the effects on the antigenicity of various C- and N-terminal deletants of HPV-16 L1 made in insect cells via recombinant baculovirus, of an A → T mutation at residue 266 (A266T), and of a C → G mutation at conserved position 428 (C428G). The effects of these changes on assembly of the variant L1s were studied by electron microscopy. Binding of Mab H16:E70 to A266T was reduced by almost half in comparison to wild type L1. Retention of the C-terminal region 428-483 was critical for the binding of conformation-specific Mabs (H16:V5, H16:E70, H16:U4 and H16:9A) whereas deletion of the nuclear localisation signal (NLS) or the C428G mutation or an N-terminal deletion (residues 2-9) did not affect the antigenicity. The N-terminal deletion resulted in a mixed population of 30 and 55 nm VLPs, which differs from the same construct expressed in Escherichia coli, whereas pentamer aggregates resulted from deletion of the 428-465 region or the C428G mutation. The results have implications both for considering use of single-genotype HPV vaccines, and for design of novel second-generation vaccines. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial hemiplegic migraine (FHM) is a rare autosomal dominant subtype of migraine with aura. It is divided into three subtypes FHM1, FHM2 and FHM3, which are caused by mutations in the CACNA1A, ATP1A2 and SCN1A genes respectively. As part of a regular diagnostic service, we investigated 168 patients with FHM symptoms. Samples were tested for mutations contained within the CACNA1A gene. Some tested samples (4.43%) showed an FHM1 mutation, with five of the mutations found in exon 5, one mutation in exon 16 and one in exon 17. Four polymorphisms were also detected, one of which occurred in a large percentage of samples (14.88%). The exon 16 2094G>A polymorphism, however, has been found to occur in healthy Caucasian control populations up to a frequency of 16% and is not considered to be significantly associated with FHM. A finding of significance, found in a single patient, was the detection of a novel mutation in exon 5 that results in a P225H change. The affected individual was an 8-year-old female. The exact phenotypic effect of this mutation is unknown, and further studies are needed to understand the pathophysiology of this mutation in FHM1. New information will allow for diagnostic procedures to be constantly updated, thus improving accuracy of diagnosis. It is possible that new information will also aid the development of new therapeutic agents for the treatment of FHM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine with aura is a common, debilitating, recurrent headache disorder associated with transient and reversible focal neurological symptoms. A role has been suggested for the two-pore domain (K2P) potassium channel, TWIK-related spinal cord potassium channel (TRESK, encoded by KCNK18), in pain pathways and general anaesthesia. We therefore examined whether TRESK is involved in migraine by screening the KCNK18 gene in subjects diagnosed with migraine. Here we report a frameshift mutation, F139WfsX24, which segregates perfectly with typical migraine with aura in a large pedigree. We also identified prominent TRESK expression in migraine-salient areas such as the trigeminal ganglion. Functional characterization of this mutation demonstrates that it causes a complete loss of TRESK function and that the mutant subunit suppresses wild-type channel function through a dominant-negative effect, thus explaining the dominant penetrance of this allele. These results therefore support a role for TRESK in the pathogenesis of typical migraine with aura and further support the role of this channel as a potential therapeutic target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence indicates that the estrogen receptor-a-negative, androgen receptor (AR)- positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5a-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDAMB- 453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype. Endocrine-Related Cancer (2012) 19 599–613

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Success with molecular-based targeted drugs in the treatment of cancer has ignited extensive research efforts within the field of personalized therapeutics. However, successful application of such therapies is dependent on the presence or absence of mutations within the patient's tumor that can confer clinical efficacy or drug resistance. Building on these findings, we developed a high-throughput mutation panel for the identification of frequently occurring and clinically relevant mutations in melanoma. An extensive literature search and interrogation of the Catalogue of Somatic Mutations in Cancer database identified more than 1,000 melanoma mutations. Applying a filtering strategy to focus on mutations amenable to the development of targeted drugs, we initially screened 120 known mutations in 271 samples using the Sequenom MassARRAY system. A total of 252 mutations were detected in 17 genes, the highest frequency occurred in BRAF (n = 154, 57%), NRAS (n = 55, 20%), CDK4 (n = 8, 3%), PTK2B (n = 7, 2.5%), and ERBB4 (n = 5, 2%). Based on this initial discovery screen, a total of 46 assays interrogating 39 mutations in 20 genes were designed to develop a melanoma-specific panel. These assays were distributed in multiplexes over 8 wells using strict assay design parameters optimized for sensitive mutation detection. The final melanoma-specific mutation panel is a cost effective, sensitive, high-throughput approach for identifying mutations of clinical relevance to molecular-based therapeutics for the treatment of melanoma. When used in a clinical research setting, the panel may rapidly and accurately identify potentially effective treatment strategies using novel or existing molecularly targeted drugs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation of the BRAF gene is common in thyroid cancer. Follicular variant of papillary thyroid carcinoma is a variant of papillary thyroid carcinoma that has created continuous diagnostic controversies among pathologists. The aims of this study are to (1) investigate whether follicular variant of papillary thyroid carcinoma has a different pattern of BRAF mutation than conventional papillary thyroid carcinoma in a large cohort of patients with typical features of follicular variant of papillary thyroid carcinoma and (2) to study the relationship of clinicopathological features of papillary thyroid carcinomas with BRAF mutation. Tissue blocks from 76 patients with diagnostic features of papillary thyroid carcinomas (40 with conventional type and 36 with follicular variant) were included in the study. From these, DNA was extracted and BRAF V600E mutations were detected by polymerase chain reaction followed by restriction enzyme digestion and sequencing of exon 15. Analysis of the data indicated that BRAF V600E mutation is significantly more common in conventional papillary thyroid carcinoma (58% versus 31%, P = .022). Furthermore, the mutation was often noted in female patients (P = .017), in high-stage cancers (P = .034), and in tumors with mild lymphocytic thyroiditis (P = .006). We concluded that follicular variant of papillary thyroid carcinoma differs from conventional papillary thyroid carcinoma in the rate of BRAF mutation. The results of this study add further information indicating that mutations in BRAF play a role in thyroid cancer development and progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The phase III FLEX study (NCT00148798) in advanced non-small-cell lung cancer indicated that the survival benefit associated with the addition of cetuximab to cisplatin and vinorelbine was limited to patients whose tumors expressed high levels of epidermal growth factor receptor (EGFR) (immunohistochemistry score of >/=200; scale 0-300). We assessed whether the treatment effect was also modulated in FLEX study patients by tumor EGFR mutation status. METHODS: A tumor mutation screen of EGFR exons 18 to 21 included 971 of 1125 (86%) FLEX study patients. Treatment outcome in low and high EGFR expression groups was analyzed across efficacy endpoints according to tumor EGFR mutation status. RESULTS: Mutations in EGFR exons 18 to 21 were detected in 133 of 971 tumors (14%), 970 of which were also evaluable for EGFR expression level. The most common mutations were exon 19 deletions and L858R (124 of 133 patients; 93%). In the high EGFR expression group (immunohistochemistry score of >/=200), a survival benefit for the addition of cetuximab to chemotherapy was demonstrated in patients with EGFR wild-type (including T790M mutant) tumors. Although patient numbers were small, those in the high EGFR expression group whose tumors carried EGFR mutations may also have derived a survival benefit from the addition of cetuximab to chemotherapy. Response data suggested a cetuximab benefit in the high EGFR expression group regardless of EGFR mutation status. CONCLUSIONS: The survival benefit associated with the addition of cetuximab to first-line chemotherapy for advanced non-small-cell lung cancer expressing high levels of EGFR is not limited by EGFR mutation status.