959 resultados para Multiple routes planning
Resumo:
Navigating cluttered indoor environments is a difficult problem in indoor service robotics. The Acroboter concept, a novel approach to indoor locomotion, represents unique opportunity to avoid obstacles in indoor environments by navigating the ceiling plane. This mode of locomotion requires the ability to accurately detect obstacles, and plan 3D trajectories through the environment. This paper presents the development of a resilient object tracking system, as well as a novel approach to generating 3D paths suitable for such robot configurations. Distributed human-machine interfacing allowing simulation previewing of actions is also considered in the developed system architecture.
Resumo:
Unorganized traffic is a generalized form of travel wherein vehicles do not adhere to any predefined lanes and can travel in-between lanes. Such travel is visible in a number of countries e.g. India, wherein it enables a higher traffic bandwidth, more overtaking and more efficient travel. These advantages are visible when the vehicles vary considerably in size and speed, in the absence of which the predefined lanes are near-optimal. Motion planning for multiple autonomous vehicles in unorganized traffic deals with deciding on the manner in which every vehicle travels, ensuring no collision either with each other or with static obstacles. In this paper the notion of predefined lanes is generalized to model unorganized travel for the purpose of planning vehicles travel. A uniform cost search is used for finding the optimal motion strategy of a vehicle, amidst the known travel plans of the other vehicles. The aim is to maximize the separation between the vehicles and static obstacles. The search is responsible for defining an optimal lane distribution among vehicles in the planning scenario. Clothoid curves are used for maintaining a lane or changing lanes. Experiments are performed by simulation over a set of challenging scenarios with a complex grid of obstacles. Additionally behaviours of overtaking, waiting for a vehicle to cross and following another vehicle are exhibited.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
This study presents a new methodology based on risk/investment to solve transmission network expansion planning (TNEP) problem with multiple future scenarios. Three mathematical models related to TNEP problems considering multiple future generation and load scenarios are also presented. These models will provide planners with a meaningful risk assessment that enable them to determine the necessary funding for transmission lines at a permissible risk level. The results using test and real systems show that the proposed method presents better solutions compared with scenario analysis method. ©The Institution of Engineering and Technology 2013.
Resumo:
Contiene las conclusiones y recomendaciones del Taller que tuvo por objetivo analizar las politicas de desarrollo y sus perspectivas en el area de influencia del aprovechamiento multiple de Salto Grande, con el fin de recomendar las vias mas favorables para incorporar la dimension ambiental en los procesos de planificacion.
Resumo:
This article describes the use of Artificial Intelligence (IA) techniques applied in cells of a manufacturing system. Machine Vision was used to identify pieces and their positions of two different products to be assembled in the same productive line. This information is given as input for an IA planner embedded in the manufacturing system. Therefore, initial and final states are sent automatically to the planner capable to generate assembly plans for a robotic cell, in real time.
Resumo:
Bone marrow ablation, i.e., the complete sterilization of the active bone marrow, followed by bone marrow transplantation (BMT) is a comment treatment of hematological malignancies. The use of targeted bone-seeking radiopharmaceuticals to selectively deliver radiation to the adjacent bone marrow cavities while sparing normal tissues is a promising technique. Current radiopharmaceutical treatment planning methods do not properly compensate for the patient-specific variable distribution of radioactive material within the skeleton. To improve the current method of internal dosimetry, novel methods for measuring the radiopharmaceutical distribution within the skeleton were developed. 99mTc-MDP was proven as an adequate surrogate for measuring 166Ho-DOTMP skeletal uptake and biodistribution, allowing these measures to be obtained faster, safer, and with higher spatial resolution. This translates directly into better measurements of the radiation dose distribution within the bone marrow. The resulting bone marrow dose-volume histograms allow prediction of the patient disease response where conventional organ scale dosimetry failed. They indicate that complete remission is only achieved when greater than 90% of the bone marrow receives at least 30 Gy. ^ Comprehensive treatment planning requires combining target and non-target organ dosimetry. Organs in the urinary tract were of special concern. The kidney dose is primarily dependent upon the mean transit time of 166 Ho-DOTMP through the kidney. Deconvolution analysis of renograms predicted a mean transit time of 2.6 minutes for 166Ho-DOTMP. The radiation dose to the urinary bladder wall is dependent upon numerous factors including patient hydration and void schedule. For beta-emitting isotopes such as 166Ho, reduction of the bladder wall dose is best accomplished through good patient hydration and ensuring a partially full bladder at the time of injection. Encouraging the patient to void frequently, or catheterizing the patient without irrigation, will not significantly reduce the bladder wall dose. ^ The results from this work will produce the most advanced treatment planning methodology for bone marrow ablation therapy using radioisotopes currently available. Treatments can be tailored specifically for each patient, including the addition of concomitant total body irradiation for patients with unfavorable dose distributions, to deliver a desired patient disease response, while minimizing the dose or toxicity to non-target organs. ^
Resumo:
Indiana Department of Transportation, Indianapolis
Resumo:
Issued May 1980.
Resumo:
Although the aim of conservation planning is the persistence of biodiversity, current methods trade-off ecological realism at a species level in favour of including multiple species and landscape features. For conservation planning to be relevant, the impact of landscape configuration on population processes and the viability of species needs to be considered. We present a novel method for selecting reserve systems that maximize persistence across multiple species, subject to a conservation budget. We use a spatially explicit metapopulation model to estimate extinction risk, a function of the ecology of the species and the amount, quality and configuration of habitat. We compare our new method with more traditional, area-based reserve selection methods, using a ten-species case study, and find that the expected loss of species is reduced 20-fold. Unlike previous methods, we avoid designating arbitrary weightings between reserve size and configuration; rather, our method is based on population processes and is grounded in ecological theory.
Resumo:
The first step in conservation planning is to identify objectives. Most stated objectives for conservation, such as to maximize biodiversity outcomes, are too vague to be useful within a decision-making framework. One way to clarify the issue is to define objectives in terms of the risk of extinction for multiple species. Although the assessment of extinction risk for single species is common, few researchers have formulated an objective function that combines the extinction risks of multiple species. We sought to translate the broad goal of maximizing the viability of species into explicit objectives for use in a decision-theoretic approach to conservation planning. We formulated several objective functions based on extinction risk across many species and illustrated the differences between these objectives with simple examples. Each objective function was the mathematical representation of an approach to conservation and emphasized different levels of threat Our objectives included minimizing the joint probability of one or more extinctions, minimizing the expected number of extinctions, and minimizing the increase in risk of extinction from the best-case scenario. With objective functions based on joint probabilities of extinction across species, any correlations in extinction probabilities bad to be known or the resultant decisions were potentially misleading. Additive objectives, such as the expected number of extinctions, did not produce the same anomalies. We demonstrated that the choice of objective function is central to the decision-making process because alternative objective functions can lead to a different ranking of management options. Therefore, decision makers need to think carefully in selecting and defining their conservation goals.