877 resultados para Multi-objective evolutionary algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2A for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective Clustering with automatic K-determination (MOCK). the algorithm most closely related to ours. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a methodology to consider the effects of the integration of DG on planning. Since DG has potential to defer investments in networks, the impact of DG on grid capacity is evaluated. A multi-objective optimization tool based on the meta-heuristic MEPSO is used, supporting an alternative approach to exploiting the Pareto front features. Tests were performed in distinct conditions with two well-known distribution networks: IEEE-34 and IEEE-123. The results combined minimization and maximization in order to produce different Pareto fronts and determine the extent of the impact caused by DG. The analysis provides useful information, such as the identification of futures that should be considered in planning. A future means a set of realizations of all uncertainties. MEPSO also presented a satisfactory performance in obtaining the Pareto fronts. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous paper a novel Generalized Multiobjective Multitree model (GMM-model) was proposed. This model considers for the first time multitree-multicast load balancing with splitting in a multiobjective context, whose mathematical solution is a whole Pareto optimal set that can include several results than it has been possible to find in the publications surveyed. To solve the GMM-model, in this paper a multi-objective evolutionary algorithm (MOEA) inspired by the Strength Pareto Evolutionary Algorithm (SPEA) is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network, with two simultaneous data flows

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta um método para encontrar um conjunto de pontos de operação, os quais são ótimos de Pareto com diversidade, para linhas digitais de assinante (DSL - digital subscriber line). Em diversos trabalhos encontrados na literatura, têm sido propostos algoritmos para otimização da transmissão de dados em linhas DSL, que fornecem como resultado apenas um ponto de operação para os modems. Esses trabalhos utilizam, em geral, algoritmos de balanceamento de espectro para resolver um problema de alocação de potência, o que difere da abordagem apresentada neste trabalho. O método proposto, chamado de diverseSB , utiliza um processo híbrido composto de um algoritmo evolucionário multiobjetivo (MOEA - multi-objective evolutionary algorithm), mais precisamente, um algoritmo genético com ordenamento por não-dominância (NSGA-II - Non-Dominated Sorting Genetic Algorithm II), e usando ainda, um algoritmo de balanceamento de espectro. Os resultados obtidos por simulações mostram que, para uma dada diversidade, o custo computacional para determinar os pontos de operação com diversidade usando o algoritmo diverseSB proposto é muito menor que métodos de busca de “força bruta”. No método proposto, o NSGA-II executa chamadas ao algoritmo de balanceamento de espectro adotado, por isso, diversos testes envolvendo o mesmo número de chamadas ao algoritmo foram realizadas com o método diverseSB proposto e o método de busca por força bruta, onde os resultados obtidos pelo método diverseSB proposto foram bem superiores do que os resultados do método de busca por força bruta. Por exemplo, o método de força bruta realizando 1600 chamadas ao algoritmo de balanceamento de espectro, obtém um conjunto de pontos de operação com diversidade semelhante ao do método diverseSB proposto com 535 chamadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La energía transportada por el oleaje a través de los océanos (energía undimotriz) se enmarca dentro de las denominadas energías oceánicas. Su aprovechamiento para generar energía eléctrica (o ser aprovechada de alguna otra forma) es una idea reflejada ya hace más de dos siglos en una patente (1799). Desde entonces, y con especial intensidad desde los años 70, ha venido despertando el interés de instituciones ligadas al I+D+i y empresas del sector energético y tecnológico, debido principalmente a la magnitud del recurso disponible. Actualmente se puede considerar al sector en un estado precomercial, con un amplio rango de dispositivos y tecnologías en diferente grado de desarrollo en los que ninguno destaca sobre los otros (ni ha demostrado su viabilidad económica), y sin que se aprecie una tendencia a converger un único dispositivo (o un número reducido de ellos). El recurso energético que se está tratando de aprovechar, pese a compartir la característica de no-controlabilidad con otras fuentes de energía renovable como la eólica o la solar, presenta una variabilidad adicional. De esta manera, diferentes localizaciones, pese a poder presentar recursos de contenido energético similar, presentan oleajes de características muy diferentes en términos de alturas y periodos de oleaje, y en la dispersión estadística de estos valores. Esta variabilidad en el oleaje hace que cobre especial relevancia la adecuación de los dispositivos de aprovechamiento de energía undimotriz (WEC: Wave Energy Converter) a su localización, de cara a mejorar su viabilidad económica. Parece razonable suponer que, en un futuro, el proceso de diseño de un parque de generación undimotriz implique un rediseño (en base a una tecnología conocida) para cada proyecto de implantación en una nueva localización. El objetivo de esta tesis es plantear un procedimiento de dimensionado de una tecnología de aprovechamiento de la energía undimotriz concreta: los absorbedores puntuales. Dicha metodología de diseño se plantea como un problema de optimización matemático, el cual se resuelve utilizando un algoritmo de optimización bioinspirado: evolución diferencial. Este planteamiento permite automatizar la fase previa de dimensionado implementando la metodología en un código de programación. El proceso de diseño de un WEC es un problema de ingería complejo, por lo que no considera factible el planteamiento de un diseño completo mediante un único procedimiento de optimización matemático. En vez de eso, se platea el proceso de diseño en diferentes etapas, de manera que la metodología desarrollada en esta tesis se utilice para obtener las dimensiones básicas de una solución de referencia de WEC, la cual será utilizada como punto de partida para continuar con las etapas posteriores del proceso de diseño. La metodología de dimensionado previo presentada en esta tesis parte de unas condiciones de contorno de diseño definidas previamente, tales como: localización, características del sistema de generación de energía eléctrica (PTO: Power Take-Off), estrategia de extracción de energía eléctrica y concepto concreto de WEC). Utilizando un algoritmo de evolución diferencial multi-objetivo se obtiene un conjunto de soluciones factibles (de acuerdo con una ciertas restricciones técnicas y dimensionales) y óptimas (de acuerdo con una serie de funciones objetivo de pseudo-coste y pseudo-beneficio). Dicho conjunto de soluciones o dimensiones de WEC es utilizado como caso de referencia en las posteriores etapas de diseño. En el documento de la tesis se presentan dos versiones de dicha metodología con dos modelos diferentes de evaluación de las soluciones candidatas. Por un lado, se presenta un modelo en el dominio de la frecuencia que presenta importantes simplificaciones en cuanto al tratamiento del recurso del oleaje. Este procedimiento presenta una menor carga computacional pero una mayor incertidumbre en los resultados, la cual puede traducirse en trabajo adicional en las etapas posteriores del proceso de diseño. Sin embargo, el uso de esta metodología resulta conveniente para realizar análisis paramétricos previos de las condiciones de contorno, tales como la localización seleccionada. Por otro lado, la segunda metodología propuesta utiliza modelos en el domino estocástico, lo que aumenta la carga computacional, pero permite obtener resultados con menos incertidumbre e información estadística muy útil para el proceso de diseño. Por este motivo, esta metodología es más adecuada para su uso en un proceso de dimensionado completo de un WEC. La metodología desarrollada durante la tesis ha sido utilizada en un proyecto industrial de evaluación energética preliminar de una planta de energía undimotriz. En dicho proceso de evaluación, el método de dimensionado previo fue utilizado en una primera etapa, de cara a obtener un conjunto de soluciones factibles de acuerdo con una serie de restricciones técnicas básicas. La selección y refinamiento de la geometría de la solución geométrica de WEC propuesta fue realizada a posteriori (por otros participantes del proyecto) utilizando un modelo detallado en el dominio del tiempo y un modelo de evaluación económica del dispositivo. El uso de esta metodología puede ayudar a reducir las iteraciones manuales y a mejorar los resultados obtenidos en estas últimas etapas del proyecto. ABSTRACT The energy transported by ocean waves (wave energy) is framed within the so-called oceanic energies. Its use to generate electric energy (or desalinate ocean water, etc.) is an idea expressed first time in a patent two centuries ago (1799). Ever since, but specially since the 1970’s, this energy has become interesting for R&D institutions and companies related with the technological and energetic sectors mainly because of the magnitude of available energy. Nowadays the development of this technology can be considered to be in a pre-commercial stage, with a wide range of devices and technologies developed to different degrees but with none standing out nor economically viable. Nor do these technologies seem ready to converge to a single device (or a reduce number of devices). The energy resource to be exploited shares its non-controllability with other renewable energy sources such as wind and solar. However, wave energy presents an additional short-term variability due to its oscillatory nature. Thus, different locations may show waves with similar energy content but different characteristics such as wave height or wave period. This variability in ocean waves makes it very important that the devices for harnessing wave energy (WEC: Wave Energy Converter) fit closely to the characteristics of their location in order to improve their economic viability. It seems reasonable to assume that, in the future, the process of designing a wave power plant will involve a re-design (based on a well-known technology) for each implementation project in any new location. The objective of this PhD thesis is to propose a dimensioning method for a specific wave-energy-harnessing technology: point absorbers. This design methodology is presented as a mathematical optimization problem solved by using an optimization bio-inspired algorithm: differential evolution. This approach allows automating the preliminary dimensioning stage by implementing the methodology in programmed code. The design process of a WEC is a complex engineering problem, so the complete design is not feasible using a single mathematical optimization procedure. Instead, the design process is proposed in different stages, so the methodology developed in this thesis is used for the basic dimensions of a reference solution of the WEC, which would be used as a starting point for the later stages of the design process. The preliminary dimensioning methodology presented in this thesis starts from some previously defined boundary conditions such as: location, power take-off (PTO) characteristic, strategy of energy extraction and specific WEC technology. Using a differential multi-objective evolutionary algorithm produces a set of feasible solutions (according to certain technical and dimensional constraints) and optimal solutions (according to a set of pseudo-cost and pseudo-benefit objective functions). This set of solutions or WEC dimensions are used as a reference case in subsequent stages of design. In the document of this thesis, two versions of this methodology with two different models of evaluation of candidate solutions are presented. On the one hand, a model in the frequency domain that has significant simplifications in the treatment of the wave resource is presented. This method implies a lower computational load but increased uncertainty in the results, which may lead to additional work in the later stages of the design process. However, use of this methodology is useful in order to perform previous parametric analysis of boundary conditions such as the selected location. On the other hand, the second method uses stochastic models, increasing the computational load, but providing results with smaller uncertainty and very useful statistical information for the design process. Therefore, this method is more suitable to be used in a detail design process for full dimensioning of the WEC. The methodology developed throughout the thesis has been used in an industrial project for preliminary energetic assessment of a wave energy power plant. In this assessment process, the method of previous dimensioning was used in the first stage, in order to obtain a set of feasible solutions according to a set of basic technical constraints. The geometry of the WEC was refined and selected subsequently (by other project participants) using a detailed model in the time domain and a model of economic evaluation of the device. Using this methodology can help to reduce the number of design iterations and to improve the results obtained in the last stages of the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le Système Stockage de l’Énergie par Batterie ou Batterie de Stockage d’Énergie (BSE) offre de formidables atouts dans les domaines de la production, du transport, de la distribution et de la consommation d’énergie électrique. Cette technologie est notamment considérée par plusieurs opérateurs à travers le monde entier, comme un nouveau dispositif permettant d’injecter d’importantes quantités d’énergie renouvelable d’une part et d’autre part, en tant que composante essentielle aux grands réseaux électriques. De plus, d’énormes avantages peuvent être associés au déploiement de la technologie du BSE aussi bien dans les réseaux intelligents que pour la réduction de l’émission des gaz à effet de serre, la réduction des pertes marginales, l’alimentation de certains consommateurs en source d’énergie d’urgence, l’amélioration de la gestion de l’énergie, et l’accroissement de l’efficacité énergétique dans les réseaux. Cette présente thèse comprend trois étapes à savoir : l’Étape 1 - est relative à l’utilisation de la BSE en guise de réduction des pertes électriques ; l’Étape 2 - utilise la BSE comme élément de réserve tournante en vue de l’atténuation de la vulnérabilité du réseau ; et l’Étape 3 - introduit une nouvelle méthode d’amélioration des oscillations de fréquence par modulation de la puissance réactive, et l’utilisation de la BSE pour satisfaire la réserve primaire de fréquence. La première Étape, relative à l’utilisation de la BSE en vue de la réduction des pertes, est elle-même subdivisée en deux sous-étapes dont la première est consacrée à l’allocation optimale et le seconde, à l’utilisation optimale. Dans la première sous-étape, l’Algorithme génétique NSGA-II (Non-dominated Sorting Genetic Algorithm II) a été programmé dans CASIR, le Super-Ordinateur de l’IREQ, en tant qu’algorithme évolutionniste multiobjectifs, permettant d’extraire un ensemble de solutions pour un dimensionnement optimal et un emplacement adéquat des multiple unités de BSE, tout en minimisant les pertes de puissance, et en considérant en même temps la capacité totale des puissances des unités de BSE installées comme des fonctions objectives. La première sous-étape donne une réponse satisfaisante à l’allocation et résout aussi la question de la programmation/scheduling dans l’interconnexion du Québec. Dans le but de réaliser l’objectif de la seconde sous-étape, un certain nombre de solutions ont été retenues et développées/implantées durant un intervalle de temps d’une année, tout en tenant compte des paramètres (heure, capacité, rendement/efficacité, facteur de puissance) associés aux cycles de charge et de décharge de la BSE, alors que la réduction des pertes marginales et l’efficacité énergétique constituent les principaux objectifs. Quant à la seconde Étape, un nouvel indice de vulnérabilité a été introduit, formalisé et étudié ; indice qui est bien adapté aux réseaux modernes équipés de BES. L’algorithme génétique NSGA-II est de nouveau exécuté (ré-exécuté) alors que la minimisation de l’indice de vulnérabilité proposé et l’efficacité énergétique représentent les principaux objectifs. Les résultats obtenus prouvent que l’utilisation de la BSE peut, dans certains cas, éviter des pannes majeures du réseau. La troisième Étape expose un nouveau concept d’ajout d’une inertie virtuelle aux réseaux électriques, par le procédé de modulation de la puissance réactive. Il a ensuite été présenté l’utilisation de la BSE en guise de réserve primaire de fréquence. Un modèle générique de BSE, associé à l’interconnexion du Québec, a enfin été proposé dans un environnement MATLAB. Les résultats de simulations confirment la possibilité de l’utilisation des puissances active et réactive du système de la BSE en vue de la régulation de fréquence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earthworks involve the levelling or shaping of a target area through the moving or processing of the ground surface. Most construction projects require earthworks, which are heavily dependent on mechanical equipment (e.g., excavators, trucks and compactors). Often, earthworks are the most costly and time-consuming component of infrastructure constructions (e.g., road, railway and airports) and current pressure for higher productivity and safety highlights the need to optimize earthworks, which is a nontrivial task. Most previous attempts at tackling this problem focus on single-objective optimization of partial processes or aspects of earthworks, overlooking the advantages of a multi-objective and global optimization. This work describes a novel optimization system based on an evolutionary multi-objective approach, capable of globally optimizing several objectives simultaneously and dynamically. The proposed system views an earthwork construction as a production line, where the goal is to optimize resources under two crucial criteria (costs and duration) and focus the evolutionary search (non-dominated sorting genetic algorithm-II) on compaction allocation, using linear programming to distribute the remaining equipment (e.g., excavators). Several experiments were held using real-world data from a Portuguese construction site, showing that the proposed system is quite competitive when compared with current manual earthwork equipment allocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.