914 resultados para Mrna Expression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the expression profile of two NMDAR1 mRNA isoform subsets. NR1(0xx) and NR1(1xx), in discrete regions of human cerebral cortex. The subsets are characterized by the absence or presence of a 21-amino acid N-terminal cassette. Reverse transcription polymerase chain reaction for NR1 isoforms was performed on total RNA preparations from spared and susceptible regions from 10 pathologically confirmed Alzheimer's disease (AD) cases and 10 matched controls. Primers spanning the splice insert yielded two bands, 342 bp (NR1(0xx)) and 405 bp (NR1(1xx)), on agarose gel electrophoresis. The bands were visualized with ethidium and quantified by densitometry. NR1(1xx) transcript expression was calculated as a proportion of the NR1(1xx) + NR1(0xx) total. Values were significantly lower in AD cases than in controls in mid-cingulate cortex, p < 0.01, superior temporal cortex, p < 0.01 and hippocampus, p similar to 0.05. Cortical proportionate NR1(1xx) transcript expression was invariant over the range of ages acid areas of controls tested, at similar to 50%. This was also true for AD motor and occipital cortex. Proportionate NR1(1xx) expression in AD cingulate and temporal cortex was lower at younger ages and increased with age: this regression was significantly different from that in the homotropic areas of controls. Variations in NR1 N-terminal cassette expression may underlie the local vulnerability to excitotoxic damage of some areas in the AD brain. Alternatively, changes in NR1 mRNA expression may arise as a consequence of the AD disease process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Growth hormone (GH) is a potent regulator of bone formation. The proposed mechanism of GH action is through the stimulation of osteogenic precursor Cell proliferation and, following clonal expansion of these cells. promotion of differentiation along the osteogenic lineage. Objectives: We tested this hypothesis by studying the effects of GH on primary cell populations of human periodontal ligament cells (PLC) and alveolar bone cells (ABC), which contain a spectrum of osteogenic precursors. Method: The cell populations were assessed for mineralization potential after long-term culture in media containing beta-glycerophosphate and ascorbic acid, by the demonstration of mineral deposition by Von Kossa staining. The proliferative response of the cells to GH was determined over a 48-h period using a crystal violet dye-binding assay. The profile of the cells in terms of osteogcnic marker expression was established using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for alkaline phosphatase (ALP), osteopontin. osteocalcin, bone sialoprotein (BSP), as well as the bone morphogenetic proteins BMP-2, BMP-4 and BMP-7. Results: As expected, a variety of responses were observed ranging from no mineralization in the PLC populations to dense mineralized deposition observed in one GH-treated ABC population. Over a 48-h period GH was found to be non-mitogenic for all cell populations. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) BSP mRNA expression correlated well with mineralizing potential of the cells. The change in the mRNA expression of the osteogenic markers was determined following GH treatment of the cells over a 48-h period. GH caused an increase in ALP in most cell populations, and also in BMP expression in some cell populations. However a decrease in BSP. osteocalcin and osteopontin expression in the more highly differentiated cell populations was observed in response to GH. Conclusion: The response of the cells indicates that while long-term treatment with GH may promote mineralization, short-term treatment does not promote proliferation of osteoblast precursors nor induce expression of late osteogenic markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to study the T helper type 1/2 (Th1/Th2) cytokine profile in a co-infection murine model of Plasmodium chabaudi chabaudi and Leishmania infantum. Expression of interferon-gamma (IFN-g) and interleukin-4 (IL-4) was analyzed, in spleen and liver of C57BL/6 mice, by reverse transcriptase-polymerase chain reaction. High levels of IFN-g expression did not prevent the progression of Leishmania in co-infected mice and Leishmania infection did not interfere with the Th1/Th2 switch necessary for Plasmodium control. The presence of IL-4 at day 28 in co-infected mice, essential for Plasmodium elimination, was probably a key factor on the exacerbation of the Leishmania infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase activity (TA) is detected in most human cancers but, with few exceptions, not in normal somatic cells. Little is known about TA in soft tissue tumors. We have examined a series of benign and malignant soft tissue tumors for TA using the telomerase repeat amplification protocol assay. Analysis of the expression of the human telomerase reverse transcriptase was also carried out using RT-PCR. TA was undetectable in benign lesions (15 of 15) and low-grade sarcomas (6 of 6) and was detectable in 50% (19 of 38) of intermediate-/high-grade sarcomas. Although the presence of TA in soft tissue tumors is synonymous with malignancy, it is neither a reliable method in making the distinction between reactive/benign and malignant (especially low-grade) lesions nor a reliable marker of tumor aggressiveness. Leiomyosarcomas and storiform/pleomorphic malignant fibrous histiocytomas rarely showed TA, irrespective of their grade. A strong correlation between human telomerase reverse transcriptase mRNA expression and TA was observed, supporting the close relationship between both parameters. No significant relationship was observed between proliferative activity (as assessed by MIB-1 immunolabeling) and TA. We verified that the absence of telomerase expression was not due to the presence of telomerase inhibitors and therefore alternative mechanism(s) for cell immortalization, yet to be determined, seem to be involved in the development and/or maintenance of some soft tissue sarcomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the contribution of each alpha(1)-adrenoceptor (AR) subtype in noradrenaline (NAd)-evoked contraction in the thoracic aortas and mesenteric arteries of mice. Compared with the concentration-response curves (CRCs) for NAd in the thoracic aortas of wild-type (WT) mice, the CRCs of mutant mice showed a significantly lower sensitivity. The pD(2) value in rank order is as follows: WT mice (8.21) > alpha(1B)-adrenoceptor knockout (alpha(1B)-KO) (7.77) > alpha(1D)-AR knockout (alpha(1D)-KO) (6.44) > alpha(1B)- and alpha(1D)-AR double knockout (alpha(1BD)-KO) (5.15). In the mesenteric artery, CRCs for NAd did not differ significantly between either WT (6.52) and alpha(1B)-KO mice (7.12) or alpha(1D)-KO (6.19) and alpha(1BD)-KO (6.29) mice. However, the CRC maximum responses to NAd in alpha(1D)- and alpha(1BD)-KO mice were significantly lower than those in WT and alpha(1B)-KO mice. Except in the thoracic aortas of alpha(1BD)-KO mice, the competitive antagonist prazosin inhibited the contraction response to NAd with high affinity. However, prazosin produced shallow Schild slopes in the vessels of mice lacking the alpha(1D)-AR gene. In the thoracic aorta, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.25 and 8.46, respectively, and in alpha(1B)-KO mice they were 8.49 and 9.13, respectively. In the mesenteric artery, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.34 and 7.47, respectively, and in alpha(1B)-KO mice they were 8.11 and 7.82, respectively. These pharmacological findings were in fairly good agreement with findings from comparison of CRCs, with the exception of the mesenteric arteries of WT and alpha(1B)-KO mice, which showed low affinities to BMY7378. We performed a quantitative analysis of the mRNA expression of each alpha(1)-AR subtype in these vessels in order to examine the correlation between mRNA expression level and the predominance of each alpha(1)-AR subtype in mediating vascular contraction. The rank order of each alpha(1)-AR subtype in terms of its vasoconstrictor role was in fairly good agreement with the level of expression of mRNA of each subtype, that is, alpha(1D)-AR > alpha(1B)-AR > alpha(1A)-AR in the thoracic aorta and alpha(1D)-AR > alpha(1A)-AR > alpha(1B)-AR in the mesenteric artery. No dramatic compensatory change of alpha(1)-AR subtype in mutant mice was observed in pharmacological or quantitative mRNA expression analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Dopamine D2 receptors are the main target of antipsychotic drugs. In the brain, D2 receptors coexpress with adenosine A2A and CB1 cannabinoid receptors, leading to functional interactions. OBJECTIVES: The protein and messenger RNA (mRNA) contents of A2A, D2, and CB1 receptors were quantified in postmortem prefrontal cortex of subjects with schizophrenia. MATERIALS AND METHODS: The study was performed in subjects suffering schizophrenia (n=31) who mainly died by suicide, matched with non-schizophrenia suicide victims (n=13) and non-suicide controls (n=33). The density of receptor proteins was evaluated by immunodetection techniques, and their relative mRNA expression was quantified by quantitative real-time polymerase chain reaction. RESULTS: In schizophrenia, the densities of A2A (90+/-6%, n=24) and D2-like receptors (95+/-5%, n=22) did not differ from those in controls (100%). Antipsychotic treatment did not induce changes in the protein expression. In contrast, the immunodensity of CB1 receptors was significantly decreased (71+/-7%, n=11; p<0.05) in antipsychotic-treated subjects with schizophrenia but not in drug-free subjects (104+/-13%, n=11). The relative mRNA amounts encoding for A2A, D2, and CB1 receptors were similar in brains of drug-free, antipsychotic-treated subjects with schizophrenia and controls. CONCLUSIONS: The findings suggest that antipsychotics induce down-regulation of CB1 receptors in brain. Since A2A, D2, and CB1 receptors coexpress on brain GABAergic neurons and reductions in markers of GABA neurotransmission have been identified in schizophrenia, a lower density of CB1 receptor induced by antipsychotics could represent an adaptative mechanism that reduces the endocannabinoid-mediated suppression of GABA release, contributing to the normalization of cognitive functions in the disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reelin gene encodes an extracellular protein that is crucial for neuronal migration in laminated brain regions. To gain insights into the functions of Reelin, we performed high-resolution in situ hybridization analyses to determine the pattern of reelin expression in the developing forebrain of the mouse. We also performed double-labeling studies with several markers, including calcium-binding proteins, GAD65/67, and neuropeptides, to characterize the neuronal subsets that express reelin transcripts. reelinexpression was detected at embryonic day 10 and later in the forebrain, with a distribution that is consistent with the prosomeric model of forebrain regionalization. In the diencephalon, expression was restricted to transverse and longitudinal domains that delineated boundaries between neuromeres. During embryogenesis,reelin was detected in the cerebral cortex in Cajal-Retzius cells but not in the GABAergic neurons of layer I. At prenatal stages, reelin was also expressed in the olfactory bulb, and striatum and in restricted nuclei in the ventral telencephalon, hypothalamus, thalamus, and pretectum. At postnatal stages, reelin transcripts gradually disappeared from Cajal-Retzius cells, at the same time as they appeared in subsets of GABAergic neurons distributed throughout neocortical and hippocampal layers. In other telencephalic and diencephalic regions,reelin expression decreased steadily during the postnatal period. In the adult, there was prominent expression in the olfactory bulb and cerebral cortex, where it was restricted to subsets of GABAergic interneurons that co-expressed calbindin, calretinin, neuropeptide Y, and somatostatin. This complex pattern of cellular and regional expression is consistent with Reelin having multiple roles in brain development and adult brain function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone. The resulting plasma concentrations of both steroids were close to 1 nmol/L. Aldosterone, given with or without dexamethasone, induced anti-natriuresis and kaliuresis, whereas dexamethasone alone did not. GILZ and alphaENaC transcripts were higher after treatment with either or both hormones, whereas the mRNA abundance of Sgk-1 was increased in the cortical collecting tubule by aldosterone but not by dexamethasone. We conclude the increased expression of Sgk-1 in the cortical collecting tubules is a primary event in the early antinatriuretic and kaliuretic responses to physiologic concentrations of aldosterone. Induction of alphaENaC and/or GILZ mRNAs may play a permissive role in the enhancement of the early and/or late responses; these effects may be necessary for a full response but do not by themselves promote early changes in urinary Na(+) and K(+) excretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of intralesional natural regulatory T cells, characterized by the expression of Foxp3 mRNA, was analyzed in patients with localized leishmaniasis due to Leishmania guyanensis infection that was unresponsive to treatment with pentamidine isethionate. Foxp3 mRNA levels were associated with unresponsiveness to treatment among patients with a lesion duration of 1 month, but this association was not observed among patients with a lesion duration of <1 month. In conclusion, high intralesional expression of Foxp3 might be an indicator of poor response to treatment, depending on the duration of lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Prospective-retrospective assessment of theTOP1gene copy number andTOP1mRNA expression as predictive biomarkers for adjuvant irinotecan in stage II/III colon cancer. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded tissue microarrays were obtained from an adjuvant colon cancer trial (PETACC3) where patients were randomized to 5-fluorouracil/folinic acid with or without additional irinotecan.TOP1copy number status was analyzed by fluorescencein situhybridization (FISH) using aTOP1/CEN20 dual-probe combination.TOP1mRNA data were available from previous analyses. RESULTS: TOP1FISH and follow-up data were obtained from 534 patients.TOP1gain was identified in 27% using a single-probe enumeration strategy (≥4TOP1signals per cell) and in 31% when defined by aTOP1/CEN20 ratio ≥ 1.5. The effect of additional irinotecan was not dependent onTOP1FISH status.TOP1mRNA data were available from 580 patients with stage III disease. Benefit of irinotecan was restricted to patients characterized byTOP1mRNA expression ≥ third quartile (RFS: HRadjusted, 0.59;P= 0.09; OS: HRadjusted, 0.44;P= 0.03). The treatment byTOP1mRNA interaction was not statistically significant, but in exploratory multivariable fractional polynomial interaction analysis, increasingTOP1mRNA values appeared to be associated with increasing benefit of irinotecan. CONCLUSIONS: In contrast to theTOP1copy number, a trend was demonstrated for a predictive property ofTOP1mRNA expression. On the basis ofTOP1mRNA, it might be possible to identify a subgroup of patients where an irinotecan doublet is a clinically relevant option in the adjuvant setting of colon cancer.Clin Cancer Res; 22(7); 1621-31. ©2015 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoferremia observed during systemic inflammatory disorders is regulated by hepcidin. Hepcidin up-regulation is particularly important during acute inflammation, as it restricts the availability of iron, which is necessary for pathogenic microorganism growth before adaptive immunity occurs. The aim of this study was to evaluate the clinical findings and hepatic hepcidin mRNA expression in horses using a Freund's complete adjuvant (FCA) model of inflammation. The expression of hepcidin mRNA in the liver was determined in healthy horses following two intramuscular injections of FCA at 0 h and 12 h. Plasma iron and fibrinogen concentrations were measured at multiple time points between 0 h and 240 h post-FCA injection (PI). Hepcidin mRNA expression was determined by RT-qPCR using liver biopsy samples performed at 0 h (control), 6 h and 18 h PI. The mean plasma fibrinogen level was significantly different from the control values only between 120 and 216 h PI. The mean plasma iron level was significantly lower than the control between 16 and 72 h PI, reaching the lowest levels at 30 h PI (33 % of the initial value), and returned to the reference value from 96 h PI to the end of the experiment. Hepcidin mRNA expression increased at 6 h PI and remained high at 18 h PI. The iron plasma concentration was an earlier indicator of inflammatory processes in horses when compared with fibrinogen and might be useful for the early detection of inflammation in the horse. FCA administration caused the rapid onset of hypoferremia, and this effect was likely the result of up-regulated hepatic hepcidin gene expression. This study emphasizes the importance of hepcidin and iron metabolism during inflammation in horses.