970 resultados para Mortar. Residue. Sludge. Ash
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.
Resumo:
Efficient analytical methods for the quantification of plant-available Zn contained in mineral fertilizers and industrial by-products are fundamental for the control and marketing of these inputs. In this sense, there are some doubts on the part of the scientific community as well as of the fertilizer production sector, whether the extractor requested by the government (Normative Instruction No. 28, called 2nd extractor), which is citric acid 2 % (2 % CA) (Brasil, 2007b), is effective in predicting the plant availability of Zn via mineral fertilizers and about the agronomic significance of the required minimal solubility of 60 % compared to the total content (HCl) (Brasil, 2007a). The purpose of this study was to evaluate the alternative extractors DTPA, EDTA, neutral ammonium citrate (NAC), buffer solution pH 6.0, 10 % HCl, 10 % sulfuric acid, 1 % acetic acid, water, and hot water to quantify the contents of Zn available for maize and compare them with indices of agronomic efficiency of fertilizers and industrial by-products when applied to dystrophic Clayey Red Latosol and Dystrophic Alic Red Yellow Latosol with medium texture. The rate of Zn applied to the soil was 5 mg kg-1, using the sources zinc sulfate, commercial granular zinc, ash and galvanic sludge, ash and two brass slags. Most Zn was extracted from the sources by DTPA, 10 % HCl, NAC, 1% acetic acid, and 10 % sulfuric acid. Recovery by the extractors 2 % CA, EDTA, water, and hot water was low. The agronomic efficiency index was found to be high when using galvanic sludge (238 %) and commercial granular zinc (142 %) and lower with brass slag I and II (67 and 27 %, respectively). The sources galvanizing ash and brass ash showed solubility lower than 60 % in 2 % CA, despite agronomic efficiency indices of 78 and 125 %, respectively. The low agronomic efficiency index of industrial by-products such as brass slag I and galvanizing ash can be compensated by higher doses, provided there is no restriction, as well as for all other sources, in terms of contaminant levels of arsenic, cadmium, chromium, lead, and mercury as required by law (Normative Instruction No 27/2006). The implementation of 2nd extractor 2 % CA and the requirement of minimum solubility for industrial by-products could restrict the use of alternative sources as potential Zn sources for plants.
Resumo:
Tässä diplomityössä on selvitetty yhdyskuntalietteiden ominaisuuksia sekä käsittelymenetelmiä keskittyen termiseen käsittelyyn, jolla tässä työssä tarkoitetaan lietteen termistä kuivausta ja polttoa. Työssä on myös selvitetty lietteen poltossa syntyvän tuhkan ominaisuuksia ja niiden sopivuutta lannoitteen raaka-aineena. Fosforimalmin varannot ovat rajalliset ja olettavaa on, että helposti hyödynnettävissä oleva fosforimalmi loppuu noin sadan vuoden kuluessa, mikäli fosforin kulutus pysyy nykyisellä tasolla. Kun lietettä poltetaan, jää lietteessä oleva fosfori tuhkaan. Lietteenpoltossa syntyvät tuhkat sisältävät fosforin lisäksi erilaisia haitta-aineita, joten tuhkan sisältämää fosforia ei kyetä hyödyntämään ilman käsittelyä. Työn case-osassa on selvitetty Lappeenrannan alueella syntyvä yhdyskuntalietemäärä sekä sen hyötykäyttömahdollisuudet alueellisessa lietteen polttolaitoksessa. Lappeenrannan tapauksessa syntyvä lietetuhkan määrä on arvioitu ja määritetty paljonko tuhkasta olisi tulevaisuudessa mahdollisuus jalostaa fosforilannoitetta. Tutkimuksen lopputuloksena voidaan todeta, että lietteen poltto ja polton tuhkan käyttö lannoitteena ei vielä kokonaisprosessina ole toteutettavissa oleva vaihtoehto, mutta teknologisen kehityksen jatkuessa se voisi olla potentiaalinen vaihtoehto yhdyskuntalietteen ja lietetuhkan käsittelyn kokonaisratkaisuksi.
Resumo:
The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
El presente artículo se centra en la valorización de las cenizas de lodo de depuradora adicionadas en bloques de hormigón prefabricados, por tanto, en una matriz a base de cemento Portland con características particulares (consistencia seca). Se realiza una experiencia piloto mediante la fabricación de bloques en una planta industrial local, utilizando mezclas con porcentajes de sustitución de árido fino del 5, 10 y 15% por cenizas de lodo de depuradora, cuyos resultados se compararán con bloques de referencia (sin adición). Los ensayos aplicados son los preceptivos para su comercialización según normativa europea (marcado CE), lo que permitirá igualmente comprobar las características físicas y mecánicas de los hormigones. Los resultados obtenidos son prometedores: la utilización de este residuo permitiría su comercialización, mejora características de los bloques como la resistencia a compresión, y permitiría reducir un gran volumen de material utilizado habitualmente como materia prima y consumir un residuo destinado a vertedero.
Resumo:
Binary and ternary combinations of sewage sludge ash (SSA) with marble dust (MD), fly ash (FA) and rice husk ash (RHA) as replacement in Portland cement pastes, were assessed. Several tests were carried out at different curing ages: thermogravimetry, density, water absorption, ultrasonic pulse velocity and mechanical strengths. Pozzolanic effects of the mineral admixtures, densities similar to control sample and improved absorptions when combining waste materials were identified. In general, the compressive strength reaches or exceeds the cement strength class, and blending SSA, FA and RHA (30% cement replacement) increase of strength by 9%, compared to the control sample, was achieved.
Resumo:
The main objective of this study was to evaluate the potential application of a lightweight concrete produced with lightweight coarse aggregate made of the water treatment sludge and sawdust (lightweight composite), by determining the thermal properties and possible environmental impact of future residue of this concrete. Two types of concrete were prepared: concrete produced with the lightweight composite dosed with cement/sand/composite/water in a mass ratio of 1:2.5:0.67:0.6 and conventional concrete dosed with cement/sand/crushed stone/water in a mass ratio of 1:4.8:5.8:0.8. The thermal properties were determined by the hot wire parallel technique. The possible environmental impact was measured using the procedures and guidelines of the Brazilian Association of Technical Standards - ABNT. The concrete produced with the lightweight composite presented a 23% lower thermal conductivity than the conventional concrete. The concrete produced with the lightweight composite presented a set of thermal properties suitable for the application of this concrete in non-structural sealing elements. The concentration of aluminum in the solubilized extract of the concrete produced with the lightweight composite was much lower than the concentration of aluminum in the water treatment sludge, confirming the possible reduction of environmental impact of this composite for use in concrete. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the results of a study on the behaviour of self-compacting concrete (SCC) in the fresh and hardened states, produced with binary and ternary mixes of fly ash (FA) and limestone filler (LF), using the method proposed by Nepomuceno. His method determines the SCC composition parameters in the mortar phase (self-compacting mortar - SCM) easily and efficiently, whilst guaranteeing the SCC properties in both the fresh and hardened states. For this, 11 SCMs were studied: one with cement (C) only; three with FA at 30%, 60% and 70% C substitution; three with LF at 30%, 60% and 70% C substitution; four with FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% C substitution. Once the composition of these mortars was defined, 18 SCC mixes were produced: 14 binary SCC mixes were produced with the seven binary mortar mixes, and four ternary SCC mixes were produced with the four ternary mortar mixes. In addition to the methodology proposed by Nepomuceno, the combined use of FA and LF in ternary mixtures was tested. The results confirmed that the method could yield SCC with adequate properties in both the fresh and hardened states. It was also possible to determine the SCC composition parameters in the mortar phase (self-compacting mortar - SCM) that will guarantee the SCC properties in both the fresh and hardened states, as confirmed through the optimized behaviour of the SCC in the fresh state and the promising results in the hardened state (compressive strength). The potential demonstrated by the joint use of LF and FA through the synergetic interaction of both additions is emphasized.
Resumo:
Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.
Resumo:
This article presents results of an experimental investigation on the resistance to chemical attack (with sulphuric, hydrochloric and nitric acid) of several materials: OPC concrete, high-performance concrete, epoxy resin, acrylic painting and a fly ash-based geopolymeric mortar). Three types of acids with three high concentrations (10, 20 and 30%) were used to simulate long-term degradation. A cost analysis was also performed. The results show that the epoxy resin has the best resistance to chemical attack independently of the acid type and the acid concentration. However, the cost analysis shows that the epoxy resin-based solution is the least cost-efficient solution being 70% above the cost efficiency of the fly ash-based geopolymeric mortar.
Resumo:
In Finland the thermal treatment of sewage sludge has been moderate in 21th century. The reason has been the high moisture content of sludge. During 2005-2008, 97-99% of sewage sludge was utilized in landscaping and agriculture. However agricultural use has been during 2005-2007 less than 3 %. The aim of national waste management plan is that by 2016 100% of sludge is used either as soil amendment or energy. The most popular utilization method for manure is spreading it on arable land. The dry manures such as poultry manure and horse manure could also be used in incineration. The ashes could be used as fertilizers and while it is not suitable as a starter fertilizer, it is suitable in maintaining P levels in the soil. One of the main drivers for more efficient nutrient management is the eutrophication in lakes and the Baltic See. ASH DEC process can be used in concentrating phosphorus rich ashes while separating the heavy metals that could be included. ASH DEC process uses thermochemical treatment to produce renewable phosphate for fertilizer production. The process includes mixing of ashes and chlorine donors and subsequent treatment in rotary kiln for 20 min in temperature of 900 – 1 050 oC. The heavy metals evaporate and P-rich product is obtained. The toxic substances are retained in air pollution control system in form of mixed metal hydroxides. The aim of conducting this study is to estimate the potential of ASH DEC process in treating phosphorus rich ashes in Finland. The masses considered in are sewage sludge, dry manure from horses, and poultry and liquid pig manure. To date the usual treatment method for sewage sludge in Finland is composting or anaerobic digestion. Part of the amount of produced sewage sludge (800 kt/a fresh mass and 160 kt/a TS) could also be incinerated and the residual ashes used in ASH DEC process. Incinerating only manure can be economically difficult to manage because the incineration of manure is in Finland considered as waste incineration. Getting a permit for waste incineration is difficult and also small scale waste incineration is too expensive. The manure could act as an additional feedstock in counties with high density of animal husbandry where the land area might not be enough for spreading of manure. Now when the manure acts as a supplementary feedstock beside sludge, the ash can’t be used directly as fertilizer. Then it could be used in ASH DEC process. The perquisite is that the manure producers could pay for the incineration, which might prove problematic.
Resumo:
The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.