973 resultados para Moduli of smoothness


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"HRDI-11/10-05(2M)E"--P. [4] of cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Project No. 7531, Task No. 73521."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Project No. 7351."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B70, 41A25, 41A17, 26D10. ∗Part of the results were reported at the Conference “Pioneers of Bulgarian Mathematics”, Sofia, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 42A32; 42A20

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressional- and shear-wave velocity logs (Vp and Vs, respectively) that were run to a sub-basement depth of 1013 m (1287.5 m sub-bottom) in Hole 504B suggest the presence of Layer 2A and document the presence of layers 2B and 2C on the Costa Rica Rift. Layer 2A extends from the mudline to 225 m sub-basement and is characterized by compressional-wave velocities of 4.0 km/s or less. Layer 2B extends from 225 to 900 m and may be divided into two intervals: an upper level from 225 to 600 m in which Vp decreases slowly from 5.0 to 4.8 km/s and a lower level from 600 to about 900 m in which Vp increases slowly to 6.0 km/s. In Layer 2C, which was logged for about 100 m to a depth of 1 km, Vp and Vs appear to be constant at 6.0 and 3.2 km/s, respectively. This velocity structure is consistent with, but more detailed than the structure determined by the oblique seismic experiment in the same hole. Since laboratory measurements of the compressional- and shear-wave velocity of samples from Hole 504B at Pconfining = Pdifferential average 6.0 and 3.2 km/s respectively, and show only slight increases with depth, we conclude that the velocity structure of Layer 2 is controlled almost entirely by variations in porosity and that the crack porosity of Layer 2C approaches zero. A comparison between the compressional-wave velocities determined by logging and the formation porosities calculated from the results of the large-scale resistivity experiment using Archie's Law suggest that the velocity- porosity relation derived by Hyndman et al. (1984) for laboratory samples serves as an upper bound for Vp, and the noninteractive relation derived by Toksöz et al. (1976) for cracks with an aspect ratio a = 1/32 serves as a lower bound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B70, 41A10, 41A25, 41A27, 41A35, 41A36, 42A10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the moduli space M_Ө(X) of Ө-stable (G,h)-constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion and the moduli space of Ө-stable G-constellations for finite groups G introduced by Craw and Ishii. Our construction of a morphism M_Ө(X) → X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment map of an action of Sl_2 on (C²)⁶ as one of the first examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scale functions play a central role in the fluctuation theory of spectrally negative Lévy processes and often appear in the context of martingale relations. These relations are often require excursion theory rather than Itô calculus. The reason for the latter is that standard Itô calculus is only applicable to functions with a sufficient degree of smoothness and knowledge of the precise degree of smoothness of scale functions is seemingly incomplete. The aim of this article is to offer new results concerning properties of scale functions in relation to the smoothness of the underlying Lévy measure. We place particular emphasis on spectrally negative Lévy processes with a Gaussian component and processes of bounded variation. An additional motivation is the very intimate relation of scale functions to renewal functions of subordinators. The results obtained for scale functions have direct implications offering new results concerning the smoothness of such renewal functions for which there seems to be very little existing literature on this topic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin injector part of spintronic FET and diodes suffers from fatigue due to rising heat on the depletion layer. In this study the stiffness of Ga1-xMnxAs spin injector in terms of storage modulus with respect to a varying temperature, 45 degrees C <= T <= 70 degrees C was determined. It was observed that the storage modulus for MDLs (Manganese Doping Levels) of 0%, 1% and 10% decreased with increase in temperature while that with MDLs of 20% and 50% increase with increase in temperature. MDLs of 20% and 50% appear not to allow for damping but MDLs <= 20% allow damping at temperature range of 45 degrees C <= T <= 70 degrees C. The magnitude of storage moduli of GaAs is smaller than that for ferromagnetic Ga1-xMnxAs systems. The loss moduli for GaAs were found to reduce with increase in temperature. Its magnitude of reducing gradient is smaller than Ga1-xMnxAs systems. The two temperature extremes show a general reduction in loss moduli for different MDLs at the study temperature range. From damping factor analysis, damping factors for ferromagnetic Ga1-xMnxAs was found to increase with decrease in MDLs contrary to GaAs which recorded the largest damping factor at 45 degrees C <= T <= 70 degrees C Hence, MDL of 20% shows little damping followed by 50% while MDL of 0% has the most damping in an increasing trend with temperature. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the aim of providing a worldsheet description of the refined topological string, we continue the study of a particular class of higher derivative couplings Fg,n in the type II string effective action compactified on a Calabi–Yau threefold. We analyse first order differential equations in the anti-holomorphic moduli of the theory, which relate the Fg,n to other component couplings. From the point of view of the topological theory, these equations describe the contribution of non-physical states to twisted correlation functions and encode an obstruction for interpreting the Fg,n as the free energy of the refined topological string theory. We investigate possibilities of lifting this obstruction by formulating conditions on the moduli dependence under which the differential equations simplify and take the form of generalised holomorphic anomaly equations. We further test this approach against explicit calculations in the dual heterotic theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 14J28, 14D22.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell-wall mechanical properties play an integral part in the growth and form of Saccharomyces cerevisiae, In contrast to the tremendous knowledge on the genetics of S. cerevisiae, almost nothing is known about its mechanical properties. We have developed a micromanipulation technique to measure the force required to burst single cells and have recently established a mathematical model to extract the mechanical properties of the cell wall from such data, Here we determine the average surface modulus of the S, cerevisiae cell wall to be 11.1 +/- 0.6 N/m and 12.9 +/- 0.7 N/m in exponential and stationary phases, respectively, giving corresponding Young's moduli of 112 +/- 6 MPa and 107 +/- 6 MPa, This result demonstrates that yeast cell populations strengthen as they enter stationary phase by increasing wall thickness and hence the surface modulus, without altering the average elastic properties of the cell-wall material. We also determined the average breaking strain of the cell wall to be 82% +/- 3% in exponential phase and 80% +/- 3% in stationary phase, This finding provides a failure criterion that can be used to predict when applied stresses (e,g,, because of fluid flow) will lead to wall rupture, This work analyzes yeast compression experiments in different growth phases by using engineering methodology.