980 resultados para Modified Bessel Function
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an analyze of numeric conditioning of the Hessian matrix of Lagrangian of modified barrier function Lagrangian method (MBFL) and primal-dual logarithmic barrier method (PDLB), which are obtained in the process of solution of an optimal power flow problem (OPF). This analyze is done by a comparative study through the singular values decomposition (SVD) of those matrixes. In the MBLF method the inequality constraints are treated by the modified barrier and PDLB methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables and are perturbed by the barrier parameter. The first-order necessary conditions of the Lagrangian function are solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. The electric systems IEEE 14, 162 and 300 buses were used in the comparative analysis. ©2007 IEEE.
Resumo:
This paper presents a new approach to the resolution of the Optimal Power Flow problem. In this approach the inequality constraints are treated by the Modified Barrier and Primal-Dual Logarithmic Barrier methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables, which are perturbed by the barrier parameter. A Lagrangian function is associated with the modified problem. The first-order necessary conditions are applied to the Lagrangian, generating a nonlinear system which is solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. Numerical tests on the Brazilian CESP and South-Southeast systems and a comparative test indicated that the new approach efficiently resolves of the Optimal Power Flow problem. © 2007 IEEE.
Resumo:
Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is aMichelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.
Resumo:
Am Mainzer Mikrotron können Lambda-Hyperkerne in (e,e'K^+)-Reaktionen erzeugt werden. Durch den Nachweis des erzeugten Kaons im KAOS-Spektrometer lassen sich Reaktionen markieren, bei denen ein Hyperon erzeugt wurde. Die Spektroskopie geladener Pionen, die aus schwachen Zweikörperzerfällen leichter Hyperkerne stammen, erlaubt es die Bindungsenergie des Hyperons im Kern mit hoher Präzision zu bestimmen. Neben der direkten Produktion von Hyperkernen ist auch die Erzeugung durch die Fragmentierung eines hoch angeregten Kontinuumszustands möglich. Dadurch können unterschiedliche Hyperkerne in einem Experiment untersucht werden. Für die Spektroskopie der Zerfallspionen stehen hochauflösende Magnetspektrometer zur Verfügung. Um die Grundzustandsmasse der Hyperkerne aus dem Pionimpuls zu berechnen, ist es erforderlich, dass das Hyperfragment vor dem Zerfall im Target abgebremst wird. Basierend auf dem bekannten Wirkungsquerschnitt der elementaren Kaon-Photoproduktion wurde eine Berechnung der zu erwartenden Ereignisrate vorgenommen. Es wurde eine Monte-Carlo-Simulation entwickelt, die den Fragmentierungsprozess und das Abbremsen der Hyperfragmente im Target beinhaltet. Diese nutzt ein statistisches Aufbruchsmodell zur Beschreibung der Fragmentierung. Dieser Ansatz ermöglicht für Wasserstoff-4-Lambda-Hyperkerne eine Vorhersage der zu erwartenden Zählrate an Zerfallspionen. In einem Pilotexperiment im Jahr 2011 wurde erstmalig an MAMI der Nachweis von Hadronen mit dem KAOS-Spektrometer unter einem Streuwinkel von 0° demonstriert, und koinzident dazu Pionen nachgewiesen. Es zeigte sich, dass bedingt durch die hohen Untergrundraten von Positronen in KAOS eine eindeutige Identifizierung von Hyperkernen in dieser Konfiguration nicht möglich war. Basierend auf diesen Erkenntnissen wurde das KAOS-Spektrometer so modifiziert, dass es als dedizierter Kaonenmarkierer fungierte. Zu diesem Zweck wurde ein Absorber aus Blei im Spektrometer montiert, in dem Positronen durch Schauerbildung abgestoppt werden. Die Auswirkung eines solchen Absorbers wurde in einem Strahltest untersucht. Eine Simulation basierend auf Geant4 wurde entwickelt mittels derer der Aufbau von Absorber und Detektoren optimiert wurde, und die Vorhersagen über die Auswirkung auf die Datenqualität ermöglichte. Zusätzlich wurden mit der Simulation individuelle Rückrechnungsmatrizen für Kaonen, Pionen und Protonen erzeugt, die die Wechselwirkung der Teilchen mit der Bleiwand beinhalteten, und somit eine Korrektur der Auswirkungen ermöglichen. Mit dem verbesserten Aufbau wurde 2012 eine Produktionsstrahlzeit durchgeführt, wobei erfolgreich Kaonen unter 0° Streuwinkel koninzident mit Pionen aus schwachen Zerfällen detektiert werden konnten. Dabei konnte im Impulsspektrum der Zerfallspionen eine Überhöhung mit einer Signifikanz, die einem p-Wert von 2,5 x 10^-4 entspricht, festgestellt werden. Diese Ereignisse können aufgrund ihres Impulses, den Zerfällen von Wasserstoff-4-Lambda-Hyperkernen zugeordnet werden, wobei die Anzahl detektierter Pionen konsistent mit der berechneten Ausbeute ist.
Resumo:
Mapas simpléticos têm sido amplamente utilizados para modelar o transporte caótico em plasmas e fluidos. Neste trabalho, propomos três tipos de mapas simpléticos que descrevem o movimento de deriva elétrica em plasmas magnetizados. Efeitos de raio de Larmor finito são incluídos em cada um dos mapas. No limite do raio de Larmor tendendo a zero, o mapa com frequência monotônica se reduz ao mapa de Chirikov-Taylor, e, nos casos com frequência não-monotônica, os mapas se reduzem ao mapa padrão não-twist. Mostramos como o raio de Larmor finito pode levar à supressão de caos, modificar a topologia do espaço de fases e a robustez de barreiras de transporte. Um método baseado na contagem dos tempos de recorrência é proposto para analisar a influência do raio de Larmor sobre os parâmetros críticos que definem a quebra de barreiras de transporte. Também estudamos um modelo para um sistema de partículas onde a deriva elétrica é descrita pelo mapa de frequência monotônica, e o raio de Larmor é uma variável aleatória que assume valores específicos para cada partícula do sistema. A função densidade de probabilidade para o raio de Larmor é obtida a partir da distribuição de Maxwell-Boltzmann, que caracteriza plasmas na condição de equilíbrio térmico. Um importante parâmetro neste modelo é a variável aleatória gama, definida pelo valor da função de Bessel de ordem zero avaliada no raio de Larmor da partícula. Resultados analíticos e numéricos descrevendo as principais propriedades estatísticas do parâmetro gama são apresentados. Tais resultados são então aplicados no estudo de duas medidas de transporte: a taxa de escape e a taxa de aprisionamento por ilhas de período um.
Resumo:
In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Gaussian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.
Resumo:
This paper examines the relationship between the transfer of ownership between the public and private sectors of Chinese industry, and its impacts on performance. We link ownership changes to productivity growth, and demonstrate that privatisation contributes significantly. We offer an extension that is generally ignored in the literature, in looking at firms that are taken back into state ownership, and evaluating the productivity growth effects of this. Further, we highlight the well-understood simultaneity problems, and demonstrate the hazard of ignoring the issue by comparing various estimators, including the modified control function approach. In general, the results stress the importance of allowing for such endogeneity when evaluating the productivity effects of ownership change.
Resumo:
Mathematics Subject Classification: 44A15, 33D15, 81Q99
Resumo:
Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20
Resumo:
Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory, applied to charged test particles, in a Hamiltonian framework. The equations of motion for the guiding center dynamics, under the conditions of a constant and uniform magnetic field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for the first and second order in the guiding center potential, using invertible changes of coordinates such as Lie transforms. The equations of motion are then made dimensionless, exploiting temporal and spatial periodicities of the model chosen for the electrostatic potential. They are implemented numerically in Python. Fast Fourier Transform and its inverse are used. Improvements to the original Python scripts are made, notably the introduction of a power-law curve fitting to account for anomalous diffusion, the possibility to integrate the equations in two steps to save computational time by removing trapped trajectories, and the implementation of multicolored stroboscopic plots to distinguish between trapped and untrapped guiding centers. The post-processing of the results is made in MATLAB. The values and ranges of the parameters chosen for the simulations are selected based on numerous simulations used as feedback tools. In particular, a recurring value for the threshold to detect trapped trajectories is evidenced. Effects of the Larmor radius, the amplitude of the guiding center potential and the intensity of its second order term are studied by analyzing their diffusive regimes, their stroboscopic plots and the shape of guiding center potentials. The main result is the identification of cases anomalous diffusion depending on the values of the parameters (mostly the Larmor radius). The transitions between diffusive regimes are identified. The presence of highways for the super-diffusive trajectories are unveiled. The influence of the charge on these transitions from diffusive to ballistic behaviors is analyzed.
Resumo:
284 million people worldwide suffered from type 2 diabetes mellitus (T2DM) in 2010, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy (DPN). Although DPN is the most common complication of diabetes mellitus and the leading cause of non-traumatic amputations its pathophysiology is still poorly understood. To get more insight into the molecular mechanism underlying DPN in T2DM, I used a rodent model of T2DM, the db/db mice.¦ln vivo electrophysiological recordings of diabetic animals indicated that in addition to reduced nerve conduction velocity db/db mice also present increased nerve excitability. Further ex vivo evaluation of the electrophysiological properties of db/db nerves clearly established a presence of the peripheral nerve hyperexcitability (PNH) phenotype in diabetic animals. Using pharmacological inhibitors we demonstrated that PNH is mostly mediated by the decreased activity of Kv1 channels. ln agreement with these data 1 observed that the diabetic condition led to a reduced presence of the Kv1.2 subunits in juxtaparanodal regions of db/db peripheral nerves whereas its mANA and protein expression levels were not affected. Lmportantly, I confirmed a loss of juxtaparanodal Kv1.2 subunits in nerve biopsies from type 2 diabetic patients. Together these observations indicate that the type 2 diabetic condition leads to potassium-channel mediated changes of nerve excitability thus identifying them as potential drug targets to treat sorne of the DPN related symptoms.¦Schwann cells ensheath and isolate peripheral axons by the production of myelin, which consists of lipids and proteins in a ratio of 2:1. Peripheral myelin protein 2 (= P2, Pmp2 or FABP8) was originally described as one of the most abundant myelin proteins in the peripheral nervous system. P2, which is a member of the fatty acid binding protein (FABP) family, is a 14.8 kDa cytosolic protein expressed on the cytoplasmic side of compact myelin membranes. As indicated by their name, the principal role of FABPs is thought to be the binding and transport of fatty acids.¦To study its role in myelinating glial cells I have recently generated a complete P2 knockout mouse model (P2-/-). I confirmed the loss of P2 in the sciatic nerve of P2-/- mice at the mRNA and protein level. Electrophysiological analysis of the adult (P56) mutant mice revealed a mild but significant reduction in the motor nerve conduction velocity. lnterestingly, this functional change was not accompanied by any detectable alterations in general myelin structure. However, I have observed significant alterations in the mRNA expression level of other FABPs, predominantly FABP9, in the PNS of P2-/- mice as compared to age-matched P2+/+ mice indicating a role of P2 in the glial myelin lipid metabolism.¦Le diabète de type 2 touche 284 million de personnes dans le monde en 2010 et son évolution conduit dans la moitié des cas à une neuropathie périphérique diabétique. Bien que la neuropathie périphérique soit la complication la plus courante du diabète pouvant conduire jusqu'à l'amputation, sa physiopathologie est aujourd'hui encore mal comprise. Dans le but d'améliorer les connaissances moléculaires expliquant les mécanismes de la neuropathie liée au diabète de type 2, j'ai utilisé un modèle murin du diabète de type 2, les souris db/db.¦ln vivo, les enregistrements éléctrophysiologiques des animaux diabétiques montrent qu'en plus d'une diminution de la vitesse de conduction nerveuse, les souris db/db présentent également une augmentation de l'excitabilité nerveuse. Des mesures menées Ex vivo ont montré l'existence d'un phénotype d'hyperexcitabilité sur les nerfs périphériques isolés d'animaux diabétiques. Grâce à l'utilisation d'inhibiteurs pharmacologiques, nous avons pu démontrer que l'hyperexcitabilité démontrée était due à une réduction d'activité des canaux Kv1. En accord avec ces données, j'ai observé qu'une situation de diabète conduisait à une diminution des canaux Kv1.2 aux régions juxta-paranodales des nerfs périphériques db/db, alors que l'expression du transcrit et de la protéine restait stable. J'ai également confirmé l'absence de canaux Kv1.2 aux juxta-paranoeuds de biopsies de nerfs de patients diabétiques. L'ensemble de ces observations montrent que les nerfs périphériques chez les patients atteints de diabète de type 2 est due à une diminution des canaux potassiques rapides juxtaparanodaux les identifiant ainsi comme des cibles thérapeutiques potentielles.¦Les cellules de Schwann enveloppent et isolent les axones périphériques d'une membrane spécialisée, la myéline, composée de deux fois plus de lipides que de protéines. La protéine P2 (Pmp2 "peripheral myelin protein 2" ou FABP8 "fatty acid binding protein") est l'une des protéines les plus abondantes au système nerveux périphérique. P2 appartient à la famille de protéines FABP liant et transportant les acides gras et est une protéine cytosolique de 14,8 kDa exprimée du côté cytoplasmique de la myéline compacte.¦Afin d'étudier le rôle de P2 dans les cellules de Schwann myélinisantes, j'ai généré une souris knockout (P2-/-). Après avoir validé l'absence de transcrit et de protéine P2 dans les nerfs sciatiques P2-/-, des mesures électrophysiologiques ont montré une réduction modérée mais significative de la vitesse de conduction du nerf moteur périphérique. Il est important de noter que ces changements fonctionnels n'ont pas pu être associés à quelconque changement dans la structure de la myéline. Cependant, j'ai observé dans les nerfs périphériques P2-/-, une altération significative du niveau d'expression d'ARNm d'autres FABPs et en particulier FABP9. Ce dernier résultat démontre l'importance du rôle de la protéine P2 dans le métabolisme lipidique de la myéline.
Resumo:
A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.