990 resultados para Moderate resolution imaging spectroradiometer
Resumo:
O objetivo deste trabalho foi estimar a produtividade de soja no Rio Grande do Sul, nas safras de 2000/2001 a 2002/2003, por meio de um modelo agronômico implementado em um Sistema de Informação Geográfica (SIG). Duas abordagens foram utilizadas: o modelo agronômico (AGRO), com valores de índice de área foliar (IAF) obtidos da literatura; e o modelo agronômico-espectral (AGROESPEC), com valores de IAF estimados a partir das imagens MODIS (moderate resolution imaging spectroradiometer). As estimativas de produtividade obtidas pelo modelo foram comparadas àquelas fornecidas pelo Instituto Brasileiro de Geografia e Estatística (IBGE), com o uso do teste t para pares de observação. Nas safras 2000/2001 e 2001/2002, não foram observadas diferenças significativas. Para 2002/2003, o modelo subestimou o valor de produtividade em 7,87 e 7,04%, nas abordagens AGRO e AGROESPEC, respectivamente, em comparação à produtividade fornecida pelo IBGE. Ambas as abordagens do modelo permitiram avaliação objetiva e quantitativa do efeito das condições meteorológicas sobre a produtividade de soja. Entretanto, o AGROESPEC forneceu estimativas mais detalhadas, no que se refere à variação espacial da produtividade, em razão do emprego dos valores de IAF estimados a partir das imagens MODIS.
Resumo:
O objetivo deste trabalho foi avaliar dados multitemporais, obtidos pelo sensor "moderate resolution imaging spectroradiometer" (MODIS), para o estudo da dinâmica espaço-temporal de duas sub-regiões do bioma Pantanal. Foram utilizadas 139 imagens "enhanced vegetation index" (EVI), do produto MOD13 "vegetation index", dados de altimetria oriundos do "shuttle radar topography mission" (SRTM) e dados de precipitação do "tropical rainfall measuring mission" (TRMM). Para a redução da dimensionalidade dos dados, as imagens MODIS-EVI foram amostradas com base nas curvas de nível espaçadas em 10 m. Foram aplicadas as técnicas de análise de autocorrelação e análise de agrupamentos aos dados das amostras, e a análise de componentes principais na área total da imagem. Houve dependência tanto temporal quanto espacial da resposta espectral com a precipitação. A análise de agrupamentos apontou a presença de dois grupos, o que indicou a necessidade da análise completa da área. A análise de componentes principais permitiu diferenciar quatro comportamentos distintos: as áreas permanentemente alagadas; as áreas não inundáveis, compostas por vegetação; as áreas inundáveis com maior resposta de vegetação; e áreas com vegetação ripária.
Resumo:
The objective of this work was to evaluate the application of the spectral-temporal response surface (STRS) classification method on Moderate Resolution Imaging Spectroradiometer (MODIS, 250 m) sensor images in order to estimate soybean areas in Mato Grosso state, Brazil. The classification was carried out using the maximum likelihood algorithm (MLA) adapted to the STRS method. Thirty segments of 30x30 km were chosen along the main agricultural regions of Mato Grosso state, using data from the summer season of 2005/2006 (from October to March), and were mapped based on fieldwork data, TM/Landsat-5 and CCD/CBERS-2 images. Five thematic classes were considered: Soybean, Forest, Cerrado, Pasture and Bare Soil. The classification by the STRS method was done over an area intersected with a subset of 30x30-km segments. In regions with soybean predominance, STRS classification overestimated in 21.31% of the reference values. In regions where soybean fields were less prevalent, the classifier overestimated 132.37% in the acreage of the reference. The overall classification accuracy was 80%. MODIS sensor images and the STRS algorithm showed to be promising for the classification of soybean areas in regions with the predominance of large farms. However, the results for fragmented areas and smaller farms were less efficient, overestimating soybean areas.
Resumo:
O objetivo do presente trabalho foi avaliar o potencial de uso do modelo linear de mistura espectral (MLME), aplicado em imagens "Moderate Resolution Imaging Spectroradiometer" (MODIS), para discriminar as classes de cobertura vegetal natural e antropogênica do Cerrado matogrossense. O monitoramento do bioma Cerrado está se tornando muito importante devido à sua forte antropização, principalmente nas últimas quatro décadas. Nesse contexto, o sensor MODIS apresenta-se como opção devido à sua alta resolução temporal. Entretanto, considerando sua moderada resolução espacial, é indicada a decomposição de sua resposta espectral. O MLME apresenta-se como uma técnica viável, pois permite estimar o percentual dos componentes do pixel. Os dados utilizados nos perfis temporais das classes corresponderam às seguintes imagens fração do MLME: vegetação, solo e sombra. A discriminação das classes naturais e antropogênicas foi avaliada por meio do cálculo da distância Mahalanobis e apresentada por meio de dendrogramas. As imagens fração permitem análises de séries temporais na caracterização espacial e temporal das classes. As imagens fração solo e sombra, na estação seca, apresentam melhores resultados na discriminação das classes selecionadas. Para discriminação de classes com composições florísticas semelhantes, são indicadas as imagensfraçãoda estação chuvosa.
Resumo:
The objective of this work was to develop a procedure to estimate soybean crop areas in Rio Grande do Sul state, Brazil. Estimations were made based on the temporal profiles of the enhanced vegetation index (Evi) calculated from moderate resolution imaging spectroradiometer (Modis) images. The methodology developed for soybean classification was named Modis crop detection algorithm (MCDA). The MCDA provides soybean area estimates in December (first forecast), using images from the sowing period, and March (second forecast), using images from the sowing and maximum crop development periods. The results obtained by the MCDA were compared with the official estimates on soybean area of the Instituto Brasileiro de Geografia e Estatística. The coefficients of determination ranged from 0.91 to 0.95, indicating good agreement between the estimates. For the 2000/2001 crop year, the MCDA soybean crop map was evaluated using a soybean crop map derived from Landsat images, and the overall map accuracy was approximately 82%, with similar commission and omission errors. The MCDA was able to estimate soybean crop areas in Rio Grande do Sul State and to generate an annual thematic map with the geographic position of the soybean fields. The soybean crop area estimates by the MCDA are in good agreement with the official agricultural statistics.
Resumo:
The objective of this work was to evaluate a simple, semi‑automated methodology for mapping cropland areas in the state of Mato Grosso, Brazil. A Fourier transform was applied over a time series of vegetation index products from the moderate resolution imaging spectroradiometer (Modis) sensor. This procedure allows for the evaluation of the amplitude of the periodic changes in vegetation response through time and the identification of areas with strong seasonal variation related to crop production. Annual cropland masks from 2006 to 2009 were generated and municipal cropland areas were estimated through remote sensing. We observed good agreement with official statistics on planted area, especially for municipalities with more than 10% of cropland cover (R² = 0.89), but poor agreement in municipalities with less than 5% crop cover (R² = 0.41). The assessed methodology can be used for annual cropland mapping over large production areas in Brazil.
Resumo:
O objetivo deste trabalho foi avaliar o desempenho do índice de vegetação realçado (EVI) e do índice de vegetação da diferença normalizada (NDVI) - ambos do sensor "moderate resolution imaging spectroradiometer" (Modis) -, para discriminar áreas de soja das áreas de cana‑de‑açúcar, pastagem, cerrado e floresta, no Estado do Mato Grosso. Foram utilizadas imagens adquiridas em dois períodos: durante a entressafra e por ocasião do pleno desenvolvimento da cultura da soja. Para cada classe analisada, foram selecionadas 31 amostras de mapas de referência e avaliadas as diferenças nos valores de cada índice de vegetação, para a classe soja, foram avaliadas frente às demais classes, por meio do teste de Tukey‑Kramer. Em seguida, foram avaliadas as diferenças entre os índices de vegetação, por meio do teste de Wilcoxon pareado. O NDVI apresentou melhor desempenho na discriminação das áreas de soja na entressafra, particularmente com uso das imagens do dia do ano (DA) 161 a 273, enquanto o EVI apresentou melhor desempenho no período de pleno desenvolvimento da cultura, especificamente com uso das imagens de DA 353 a 33. Portanto, o melhor resultado para classificação da soja, no Estado do Mato Grosso, via séries temporais do sensor Modis, pode ser obtida por meio do uso combinado do NDVI na entresssafra e do EVI no pleno desenvolvimento da soja.
Resumo:
This paper aims at detecting spatio-temporal clustering in fire sequences using space?time scan statistics, a powerful statistical framework for the analysis of point processes. The methodology is applied to active fire detection in the state of Florida (US) identified by MODIS (Moderate Resolution Imaging Spectroradiometer) during the period 2003?06. Results of the present study show that statistically significant clusters can be detected and localized in specific areas and periods of the year. Three out of the five most likely clusters detected for the entire frame period are localized in the north of the state, and they cover forest areas; the other two clusters cover a large zone in the south, corresponding to agricultural land and the prairies in the Everglades. In order to analyze if the wildfires recur each year during the same period, the analyses have been performed separately for the 4 years: it emerges that clusters of forest fires are more frequent in hot seasons (spring and summer), while in the southern areas, they are widely present during the whole year. The recognition of overdensities of events and the ability to locate them in space and in time can help in supporting fire management and focussing on prevention measures.
Resumo:
Composições de 16 dias de índices de vegetação do sensor MODerate resolution Imaging Spectroradiometer (MODIS), com resolução espacial de 1km, a bordo dos satélites TERRA e AQUA, foram usadas para caracterizar a dinâmica sazonal em 2004 de cinco fitofisionomias de Cerrado e analisar a sua separabilidade espectral. Os índices Normalized Difference Vegetation Index (NDVI) e Enhanced Vegetation Index (EVI), calculados a partir dos dados dos sensores de ambas as plataformas e de uma base comum de pixels, foram comparados entre si. Os resultados indicaram que: (a) dentre as fitofisionomias estudadas, a Floresta Estacional decídua apresentou uma dinâmica sazonal muito marcante em função da perda de folhas da estação chuvosa para a seca (substancial redução nos índices) e do rápido verdejamento com o início da precipitação no final de outubro (rápido incremento de NDVI e EVI); (b) o NDVI mostrou maior variabilidade entre as classes de vegetação do que o EVI apenas na estação seca; (c) a discriminação entre as fitofisionomias melhorou da estação chuvosa para a seca; (d) o NDVI foi mais eficiente do que o EVI para discriminar as classes de vegetação na estação seca, ocorrendo o contrário na estação chuvosa; e (e) na maioria das datas selecionadas para estudo, não houve diferenças estatisticamente significativas entre os índices de vegetação gerados de ambas as plataformas, apesar das variações na qualidade dos pixels selecionados para as composições de 16 dias e na geometria de iluminação e de visada.
Resumo:
O presente trabalho teve como proposta avaliar a identificação e o mapeamento das áreas de milho da região noroeste do Estado do Rio Grande do Sul a partir de dados multitemporais do sensor MODIS (Moderate Resolution Imaging Spectroradiometer) a bordo do satélite Earth Observing System - EOS-AM (Terra). O algoritmo de classificação supervisionada Spectral Angle Mapper (SAM) foi aplicado com sucesso em uma série multitemporal de imagens EVI pré-processadas. Verificou-se que as áreas classificadas como milho na imagem coincidiam plenamente com áreas mais extensas ou contínuas (> 90 ha) de milho. Áreas de menor extensão ou localizadas em encostas de morros, ao lado de vegetação arbórea, não foram detectadas pelo classificador devido à baixa resolução espacial das imagens. A maior utilidade prática da identificação e da classificação digital das áreas de milho obtidas das imagens MODIS está na sua aplicação para isolar ou complementar o mapeamento das áreas agrícolas visando ao seu monitoramento a partir de diferentes índices de vegetação, derivados de imagens de alta resolução temporal e baixa resolução espacial.
Resumo:
View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.
Resumo:
RESUMO O Estado do Paraná caracteriza-se por uma grande variabilidade de épocas de semeadura (DS) e, consequentemente, pelo desenvolvimento máximo vegetativo (DMDV), colheita (DC) e ciclo (CI) para a cultura da soja. O objetivo deste trabalho foi estimar essas datas para o período de primavera-verão do ano-safra de 2011/2012, por meio de séries temporais de imagens do Índice de Vegetação Realçado (do inglês Enhanced Vegetation Index - EVI) do sensor Modis (Moderate Resolution Imaging Spectroradiometer). Gerou-se um perfil espectrotemporal médio de EVI, considerando todos os pixels mapeados como soja dentro de cada município. Estes dados serviram de entrada no software Timesat para estimar os decêndios do ciclo da cultura (DS, DMDV, DC e CI) por municípios. Os resultados mostraram que existe grande variabilidade de datas de plantio em diferentes mesorregiões do Estado. Verificaram-se também divergências entre os resultados encontrados e os dados oficiais de DS e DC. A maior parte da semeadura (65,16%) esteve entre o terceiro decêndio de outubro e o primeiro decêndio de novembro. A maior parte da área de soja do Estado do Paraná (65,46%) teve seu DMDV em janeiro e colheita em março (53,92%).
Resumo:
On 17 August 2007, the center of Hurricane Dean passed within 92 km of the mountainous island of Dominica in the West Indies. Despite its distance from the island and its category 1–2 state, Dean brought significant total precipitation exceeding 500 mm and caused numerous landslides. Four rain gauges, a Moderate Resolution Imaging Spectroradiometer (MODIS) image, and 5-min radar scans from Guadeloupe and Martinique are used to determine the storm’s structure and the mountains’ effect on precipitation. The encounter is best described in three phases: (i) an east-northeast dry flow with three isolated drifting cells; (ii) a brief passage of the narrow outer rainband; and (iii) an extended period with south-southeast airflow in a nearly stationary spiral rainband. In this final phase, from 1100 to 2400 UTC, heavy rainfall from the stationary rainband was doubled by orographic enhancement. This enhancement pushed the sloping soils past the landslide threshold. The enhancement was caused by a modified seeder–feeder accretion mechanism that created a “dipole” pattern of precipitation, including a dry zone over the ocean in the lee. In contrast to normal trade-wind conditions, no terrain triggering of convection was identified in the hurricane environment.
Resumo:
Extratropical cyclones may have a signicant effect on column aerosol properties over ocean. European Centre for Medium Range Weather Forecasts (ECMWF) derived storm-centric composites of MODerate resolution Imaging Spectroradiometer (MODIS) and Advanced Along-Track Scanning Radiometer (AATSR) aerosol optical depth and aerosol size parameters are produced for the North Atlantic and the South Atlantic oceans. It is found that retrieved aerosol optical depth and aerosol size both increase near the center of the composite extratropical cyclones. Using composites of ECMWF ERA-Interim reanalysis data, it is demonstrated that wind speed is a considerably more likely explanatory variable than relative humidity for the aerosol observations. A comparison of composites for both MODIS and AATSR, which uses a wind speed dependent sea-surface brightness model in the aerosol retrieval, suggests that although surface brightness eects may contribute towards some of the observations, wind speed dependent emission of sea salt also appears to make a signicant contribution to the observed aerosol properties.
Resumo:
The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar to provide a seamless retrieval of ice water content, effective radius, and extinction coefficient from the thinnest cirrus (seen only by the lidar) to the thickest ice cloud (penetrated only by the radar). In this paper, several versions of the VarCloud retrieval are compared with the CloudSat standard ice-only retrieval of ice water content, two empirical formulas that derive ice water content from radar reflectivity and temperature, and retrievals of vertically integrated properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer. The retrieved variables typically agree to within a factor of 2, on average, and most of the differences can be explained by the different microphysical assumptions. For example, the ice water content comparison illustrates the sensitivity of the retrievals to assumed ice particle shape. If ice particles are modeled as oblate spheroids rather than spheres for radar scattering then the retrieved ice water content is reduced by on average 50% in clouds with a reflectivity factor larger than 0 dBZ. VarCloud retrieves optical depths that are on average a factor-of-2 lower than those from MODIS, which can be explained by the different assumptions on particle mass and area; if VarCloud mimics the MODIS assumptions then better agreement is found in effective radius and optical depth is overestimated. MODIS predicts the mean vertically integrated ice water content to be around a factor-of-3 lower than that from VarCloud for the same retrievals, however, because the MODIS algorithm assumes that its retrieved effective radius (which is mostly representative of cloud top) is constant throughout the depth of the cloud. These comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms and also for future studies to compare not only the mean values but also the full probability density function.