996 resultados para Modelos de vidros de spin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the Ising model ferromagnetic as spin-1/2 and the Blume-Capel model as spin-1, > 0 on small world network, using computer simulation through the Metropolis algorithm. We calculated macroscopic quantities of the system, such as internal energy, magnetization, specific heat, magnetic susceptibility and Binder cumulant. We found for the Ising model the same result obtained by Koreans H. Hong, Beom Jun Kim and M. Y. Choi [6] and critical behavior similar Blume-Capel model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the physical content of the following models: Maxwell, Proca, Self-Dual and Maxwell-Chern-Simons. One method we have used is the decomposition in the so called helicity variables, which can be done in the Lagrangian formalism. It leads to the correct counting of degrees of freedom without choosing a gauge condition. The method separates the propagating modes from the non-propagating ones. The Hamiltonian of the MCS and the AD is calculated. The second method used here is the analysis of the sign of the imaginary part of the residues of the two-point amplitude of the theory, showing that the models analyzed are free of ghosts. We also carry the dimensional reduction of the Maxwell-Chern-Simons and Self-Dual models from D = 2+1 to D = 1 + 1 dimensions. Next, we show that the dimensional reduction of those equivalent models also leads to equivalent models in D=1+1. Even more interesting is the fact, demonstrated here, that those reduced models can also be connected via gauge embedding. So the gauge embedding of the Self-Dual model into the Maxwell-Chern-Simons theory is preserved by the dimensional reduction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existe un amplio catálogo de posibles soluciones para resolver la problemática de las zapatas de medianería así como, por extensión, las zapatas de esquina como caso particular de las anteriores. De ellas, las más habitualmente empleadas en estructuras de edificación son, por un lado, la utilización de una viga centradora que conecta la zapata de medianería con la zapata del pilar interior más próximo y, por otro, la colaboración de la viga de la primera planta trabajando como tirante. En la primera solución planteada, el equilibrio de la zapata de medianería y el centrado de la respuesta del terreno se consigue gracias a la colaboración del pilar interior con su cimentación y al trabajo a flexión de la viga centradora. La modelización clásica considera que se logra un centrado total de la reacción del terreno, con distribución uniforme de las tensiones de contacto bajo ambas zapatas. Este planteamiento presupone, por tanto, que la viga centradora logra evitar cualquier giro de la zapata de medianería y que el pilar puede, por ello, considerarse perfectamente empotrado en la cimentación. En este primer modelo, el protagonismo fundamental recae en la viga centradora, cuyo trabajo a flexión conduce frecuentemente a unas escuadrías y a unas cuantías de armado considerables. La segunda solución, plantea la colaboración de la viga de la primera planta, trabajando como tirante. De nuevo, los métodos convencionales suponen un éxito total en el mecanismo estabilizador del tirante, que logra evitar cualquier giro de la zapata de medianería, dando lugar a una distribución de tensiones también uniforme. Los modelos convencionales existentes para el cálculo de este tipo de cimentaciones presentan, por tanto, una serie de simplificaciones que permiten el cálculo de las mismas, por medios manuales, en un tiempo razonable, pero presentan el inconveniente de su posible alejamiento del comportamiento real de la cimentación, con las consecuencias negativas que ello puede suponer en el dimensionamiento de estos elementos estructurales. La presente tesis doctoral desarrolla un contraste de los modelos convencionales de cálculo de cimentaciones de medianería y esquina, mediante un análisis alternativo con modelos de elementos finitos, con el objetivo de poner de manifiesto las diferencias entre los resultados obtenidos con ambos tipos de modelización, analizar cuáles son las variables que más influyen en el comportamiento real de este tipo de cimentaciones y proponer un nuevo modelo de cálculo, de tipo convencional, más ajustado a la realidad. El proceso de investigación se desarrolla mediante una etapa experimental virtual que utiliza como modelo un pórtico tipo de edificación, ortogonal, de hormigón armado, con dos vanos y número variable de plantas. Tras identificar el posible giro de la cimentación como elemento clave en el comportamiento de las zapatas de medianería y de esquina, se adoptan como variables de estudio aquellas que mayor influencia puedan tener sobre el citado giro de las zapatas y sobre la rigidez del conjunto del elemento estructural. Así, se han estudiado luces de 3 m a 7 m, diferente número de plantas desde baja+1 hasta baja+4, resistencias del terreno desde 100 kN/m2 hasta 300 kN/m2, relaciones de forma de la zapata de medianería de 1,5 : 1 y 2 : 1, aumento y reducción de la cuantía de armado de la viga centradora y variación del canto de la viga centradora desde el mínimo canto compatible con el anclaje de la armadura de los pilares hasta un incremento del 75% respecto del citado canto mínimo. El conjunto de pórticos generados al aplicar las variables indicadas, se ha calculado tanto por métodos convencionales como por el método de los elementos finitos. Los resultados obtenidos ponen de manifiesto importantes discrepancias entre ambos métodos que conducen a importantes diferencias en el dimensionamiento de este tipo de cimentaciones. El empleo de los métodos tradicionales da lugar, por un lado, a un sobredimensionamiento de la armadura de la viga centradora y, por otro, a un infradimensionamiento, tanto del canto de la viga centradora, como del tamaño de la zapata de medianería y del armado de la viga de la primera planta. Finalizado el análisis y discusión de resultados, la tesis propone un nuevo método alternativo, de carácter convencional y, por tanto, aplicable a un cálculo manual en un tiempo razonable, que permite obtener los parámetros clave que regulan el comportamiento de las zapatas de medianería y esquina, conduciendo a un dimensionamiento más ajustado a las necesidades reales de este tipo de cimentación. There is a wide catalogue of possible solutions to solve the problem of party shoes and, by extension, corner shoes as a special case of the above. From all of them, the most commonly used in building structures are, on one hand, the use of a centering beam that connects the party shoe with the shoe of the nearest interior pillar and, on the other hand, the collaboration of the beam of the first floor working as a tie rod. In the first proposed solution, the balance of the party shoe and the centering of the ground response is achieved thanks to the collaboration of the interior pillar with his foundation along with the bending work of the centering beam. Classical modeling considers that a whole centering of the ground reaction is achieved, with uniform contact stress distribution under both shoes. This approach to the issue presupposes that the centering beam manages to avoid any rotation of the party shoe, so the pillar can be considered perfectly embedded in the foundation. In this first model, the leading role lies in the centering beam, whose bending work usually leads to important section sizes and high amounts of reinforced. The second solution, consideres the collaboration of the beam of the first floor, working as tie rod. Again, conventional methods involve a total success in the stabilizing mechanism of the tie rod, that manages to avoid any rotation of the party shoe, resulting in a stress distribution also uniform. Existing conventional models for calculating such foundations show, therefore, a series of simplifications which allow calculation of the same, by manual means, in a reasonable time, but have the disadvantage of the possible distance from the real behavior of the foundation, with the negative consequences this could bring in the dimensioning of these structural elements. The present thesis develops a contrast of conventional models of calculation of party and corner foundations by an alternative analysis with finite element models with the aim of bring to light the differences between the results obtained with both types of modeling, analysis which are the variables that influence the real behavior of this type of foundations and propose a new calculation model, conventional type, more adjusted to reality. The research process is developed through a virtual experimental stage using as a model a typical building frame, orthogonal, made of reinforced concrete, with two openings and variable number of floors. After identifying the possible spin of the foundation as the key element in the behavior of the party and corner shoes, it has been adopted as study variables, those that may have greater influence on the spin of the shoes and on the rigidity of the whole structural element. So, it have been studied lights from 3 m to 7 m, different number of floors from lower floor + 1 to lower floor + 4, máximum ground stresses from 100 kN/m2 300 kN/m2, shape relationships of party shoe 1,5:1 and 2:1, increase and decrease of the amount of reinforced of the centering beam and variation of the height of the centering beam from the minimum compatible with the anchoring of the reinforcement of pillars to an increase of 75% from the minimum quoted height. The set of frames generated by applying the indicated variables, is calculated both by conventional methods such as by the finite element method. The results show significant discrepancies between the two methods that lead to significant differences in the dimensioning of this type of foundation. The use of traditional methods results, on one hand, to an overdimensioning of the reinforced of the centering beam and, on the other hand, to an underdimensioning, both the height of the centering beam, such as the size of the party shoe and the reinforced of the beam of the first floor. After the analysis and discussion of results, the thesis proposes a new alternative method, conventional type and, therefore, applicable to a manual calculation in a reasonable time, that allows to obtain the key parameters that govern the behavior of party and corner shoes, leading to a dimensioning more adjusted to the real needings of this type of foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature chaos has often been reported in the literature as a rare-event–driven phenomenon. However, this fact has always been ignored in the data analysis, thus erasing the signal of the chaotic behavior (still rare in the sizes achieved) and leading to an overall picture of a weak and gradual phenomenon. On the contrary, our analysis relies on a largedeviations functional that allows to discuss the size dependences. In addition, we had at our disposal unprecedentedly large configurations equilibrated at low temperatures, thanks to the Janus computer. According to our results, when temperature chaos occurs its effects are strong and can be felt even at short distances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power σ of the distance. We show that there is a value of σ of the long-range model for which the critical behavior is very similar to that of the short range model in four dimensions. We also study a value of σ for which we find the critical behavior to be compatible with that of the three-dimensional model, although we have much less precision than in the four-dimensional case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, stochastic stability, and overlap equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks.