993 resultados para Modelling goal
Resumo:
This work is devoted to the analysis of signal variation of the Cross-Direction and Machine-Direction measurements from paper web. The data that we possess comes from the real paper machine. Goal of the work is to reconstruct the basis weight structure of the paper and to predict its behaviour to the future. The resulting synthetic data is needed for simulation of paper web. The main idea that we used for describing the basis weight variation in the Cross-Direction is Empirical Orthogonal Functions (EOF) algorithm, which is closely related to Principal Component Analysis (PCA) method. Signal forecasting in time is based on Time-Series analysis. Two principal mathematical procedures that we used in the work are Autoregressive-Moving Average (ARMA) modelling and Ornstein–Uhlenbeck (OU) process.
Resumo:
Les surfaces de subdivision fournissent une méthode alternative prometteuse dans la modélisation géométrique, et ont des avantages sur la représentation classique de trimmed-NURBS, en particulier dans la modélisation de surfaces lisses par morceaux. Dans ce mémoire, nous considérons le problème des opérations géométriques sur les surfaces de subdivision, avec l'exigence stricte de forme topologique correcte. Puisque ce problème peut être mal conditionné, nous proposons une approche pour la gestion de l'incertitude qui existe dans le calcul géométrique. Nous exigeons l'exactitude des informations topologiques lorsque l'on considère la nature de robustesse du problème des opérations géométriques sur les modèles de solides, et il devient clair que le problème peut être mal conditionné en présence de l'incertitude qui est omniprésente dans les données. Nous proposons donc une approche interactive de gestion de l'incertitude des opérations géométriques, dans le cadre d'un calcul basé sur la norme IEEE arithmétique et la modélisation en surfaces de subdivision. Un algorithme pour le problème planar-cut est alors présenté qui a comme but de satisfaire à l'exigence topologique mentionnée ci-dessus.
Resumo:
Sharing of information with those in need of it has always been an idealistic goal of networked environments. With the proliferation of computer networks, information is so widely distributed among systems, that it is imperative to have well-organized schemes for retrieval and also discovery. This thesis attempts to investigate the problems associated with such schemes and suggests a software architecture, which is aimed towards achieving a meaningful discovery. Usage of information elements as a modelling base for efficient information discovery in distributed systems is demonstrated with the aid of a novel conceptual entity called infotron.The investigations are focused on distributed systems and their associated problems. The study was directed towards identifying suitable software architecture and incorporating the same in an environment where information growth is phenomenal and a proper mechanism for carrying out information discovery becomes feasible. An empirical study undertaken with the aid of an election database of constituencies distributed geographically, provided the insights required. This is manifested in the Election Counting and Reporting Software (ECRS) System. ECRS system is a software system, which is essentially distributed in nature designed to prepare reports to district administrators about the election counting process and to generate other miscellaneous statutory reports.Most of the distributed systems of the nature of ECRS normally will possess a "fragile architecture" which would make them amenable to collapse, with the occurrence of minor faults. This is resolved with the help of the penta-tier architecture proposed, that contained five different technologies at different tiers of the architecture.The results of experiment conducted and its analysis show that such an architecture would help to maintain different components of the software intact in an impermeable manner from any internal or external faults. The architecture thus evolved needed a mechanism to support information processing and discovery. This necessitated the introduction of the noveI concept of infotrons. Further, when a computing machine has to perform any meaningful extraction of information, it is guided by what is termed an infotron dictionary.The other empirical study was to find out which of the two prominent markup languages namely HTML and XML, is best suited for the incorporation of infotrons. A comparative study of 200 documents in HTML and XML was undertaken. The result was in favor ofXML.The concept of infotron and that of infotron dictionary, which were developed, was applied to implement an Information Discovery System (IDS). IDS is essentially, a system, that starts with the infotron(s) supplied as clue(s), and results in brewing the information required to satisfy the need of the information discoverer by utilizing the documents available at its disposal (as information space). The various components of the system and their interaction follows the penta-tier architectural model and therefore can be considered fault-tolerant. IDS is generic in nature and therefore the characteristics and the specifications were drawn up accordingly. Many subsystems interacted with multiple infotron dictionaries that were maintained in the system.In order to demonstrate the working of the IDS and to discover the information without modification of a typical Library Information System (LIS), an Information Discovery in Library Information System (lDLIS) application was developed. IDLIS is essentially a wrapper for the LIS, which maintains all the databases of the library. The purpose was to demonstrate that the functionality of a legacy system could be enhanced with the augmentation of IDS leading to information discovery service. IDLIS demonstrates IDS in action. IDLIS proves that any legacy system could be augmented with IDS effectively to provide the additional functionality of information discovery service.Possible applications of IDS and scope for further research in the field are covered.
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
This research is associated with the goal of the horticultural sector of the Colombian southwest, which is to obtain climatic information, specifically, to predict the monthly average temperature in sites where it has not been measured. The data correspond to monthly average temperature, and were recorded in meteorological stations at Valle del Cauca, Colombia, South America. Two components are identified in the data of this research: (1) a component due to the temporal aspects, determined by characteristics of the time series, distribution of the monthly average temperature through the months and the temporal phenomena, which increased (El Nino) and decreased (La Nina) the temperature values, and (2) a component due to the sites, which is determined for the clear differentiation of two populations, the valley and the mountains, which are associated with the pattern of monthly average temperature and with the altitude. Finally, due to the closeness between meteorological stations it is possible to find spatial correlation between data from nearby sites. In the first instance a random coefficient model without spatial covariance structure in the errors is obtained by month and geographical location (mountains and valley, respectively). Models for wet periods in mountains show a normal distribution in the errors; models for the valley and dry periods in mountains do not exhibit a normal pattern in the errors. In models of mountains and wet periods, omni-directional weighted variograms for residuals show spatial continuity. The random coefficient model without spatial covariance structure in the errors and the random coefficient model with spatial covariance structure in the errors are capturing the influence of the El Nino and La Nina phenomena, which indicates that the inclusion of the random part in the model is appropriate. The altitude variable contributes significantly in the models for mountains. In general, the cross-validation process indicates that the random coefficient model with spatial spherical and the random coefficient model with spatial Gaussian are the best models for the wet periods in mountains, and the worst model is the model used by the Colombian Institute for Meteorology, Hydrology and Environmental Studies (IDEAM) to predict temperature.
Resumo:
This paper describes a technique that can be used as part of a simple and practical agile method for requirements engineering. It is based on disciplined goal-responsibility modelling but eschews formality in favour of a set of practicality objectives. The technique can be used together with Agile Programming to develop software in internet time. We illustrate the technique and introduce lazy refinement, responsibility composition and context sketching. Goal sketching has been used in a number of real-world development.
Resumo:
View-based and Cartesian representations provide rival accounts of visual navigation in humans, and here we explore possible models for the view-based case. A visual “homing” experiment was undertaken by human participants in immersive virtual reality. The distributions of end-point errors on the ground plane differed significantly in shape and extent depending on visual landmark configuration and relative goal location. A model based on simple visual cues captures important characteristics of these distributions. Augmenting visual features to include 3D elements such as stereo and motion parallax result in a set of models that describe the data accurately, demonstrating the effectiveness of a view-based approach.
Resumo:
The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.
Resumo:
This article reviews the experiences of a practising business consultancy division. It discusses the reasons for the failure of the traditional, expert consultancy approach and states the requirements for a more suitable consultancy methodology. An approach called ‘Modelling as Learning’ is introduced, its three defining aspects being: client ownership of all analytical work performed, consultant acting as facilitator and sensitivity to soft issues within and surrounding a problem. The goal of such an approach is set as the acceleration of the client's learning about the business. The tools that are used within this methodological framework are discussed and some case studies of the methodology are presented. It is argued that a learning experience was necessary before arriving at the new methodology but that it is now a valuable and significant component of the division's work.
Resumo:
The goal of the Palaeoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to changes in different climate forcings and to feedbacks. Through comparison with observations of the environmental impacts of these climate changes, or with climate reconstructions based on physical, chemical or biological records, PMIP also addresses the issue of how well state-of-the-art models simulate climate changes. Palaeoclimate states are radically different from those of the recent past documented by the instrumental record and thus provide an out-of-sample test of the models used for future climate projections and a way to assess whether they have the correct sensitivity to forcings and feedbacks. Five distinctly different periods have been selected as focus for the core palaeoclimate experiments that are designed to contribute to the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). This manuscript describes the motivation for the choice of these periods and the design of the numerical experiments, with a focus upon their novel features compared to the experiments performed in previous phases of PMIP and CMIP as well as the benefits of common analyses of the models across multiple climate states. It also describes the information needed to document each experiment and the model outputs required for analysis and benchmarking.
Resumo:
Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.
Resumo:
We compare three frequently used volatility modelling techniques: GARCH, Markovian switching and cumulative daily volatility models. Our primary goal is to highlight a practical and systematic way to measure the relative effectiveness of these techniques. Evaluation comprises the analysis of the validity of the statistical requirements of the various models and their performance in simple options hedging strategies. The latter puts them to test in a "real life" application. Though there was not much difference between the three techniques, a tendency in favour of the cumulative daily volatility estimates, based on tick data, seems dear. As the improvement is not very big, the message for the practitioner - out of the restricted evidence of our experiment - is that he will probably not be losing much if working with the Markovian switching method. This highlights that, in terms of volatility estimation, no clear winner exists among the more sophisticated techniques.
Resumo:
The work done in this thesis attempts to demonstrate the importance of using models that can predict and represent the mobility of our society. To answer the proposed challenges two models were examined, the first corresponds to macro simulation with the intention of finding a solution to the frequency of the bus company Horários do Funchal, responsible for transport in the city of Funchal, and some surrounding areas. Where based on a simplified model of the city it was possible to increase the frequency of journeys getting an overall reduction in costs. The second model concerns the micro simulation of Avenida do Mar, where currently is being built a new roundabout (Praça da Autonomia), which connects with this avenue. Therefore it was proposed to study the impact on local traffic, and the implementation of new traffic lights for this purpose. Four possible situations in which was seen the possibility of increasing the number of lanes on the roundabout or the insertion of a bus lane were created. The results showed that having a roundabout with three lanes running is the best option because the waiting queues are minimal, and at environmental level this model will project fewer pollutants. Thus, this thesis presents two possible methods of urban planning. Transport modelling is an area that is under constant development, the global goal is to encourage more and more the use of these models, and as such it is important to have more people to devote themselves to studying new ways of addressing current problems, so that we can have more accurate models and increasing their credibility.
Resumo:
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.