947 resultados para Model mining
Resumo:
This research proposes a multi-dimensional model for Opinion Mining, which integrates customers' characteristics and their opinions about products (or services). Customer opinions are valuable for companies to deliver right products or services to their customers. This research presents a comprehensive framework to evaluate opinions' orientation based on products' hierarchy attributes. It also provides an alternative way to obtain opinion summaries for different groups of customers and different categories of produces.
Resumo:
Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others.
Resumo:
The disclosure of information and its misuse in Privacy Preserving Data Mining (PPDM) systems is a concern to the parties involved. In PPDM systems data is available amongst multiple parties collaborating to achieve cumulative mining accuracy. The vertically partitioned data available with the parties involved cannot provide accurate mining results when compared to the collaborative mining results. To overcome the privacy issue in data disclosure this paper describes a Key Distribution-Less Privacy Preserving Data Mining (KDLPPDM) system in which the publication of local association rules generated by the parties is published. The association rules are securely combined to form the combined rule set using the Commutative RSA algorithm. The combined rule sets established are used to classify or mine the data. The results discussed in this paper compare the accuracy of the rules generated using the C4. 5 based KDLPPDM system and the CS. 0 based KDLPPDM system using receiver operating characteristics curves (ROC).
Resumo:
In the age of E-Business many companies faced with massive data sets that must be analysed for gaining a competitive edge. these data sets are in many instances incomplete and quite often not of very high quality. Although statistical analysis can be used to pre-process these data sets, this technique has its own limitations. In this paper we are presenting a system - and its underlying model - that can be used to test the integrity of existing data and pre-process the data into clearer data sets to be mined. LH5 is a rule-based system, capable of self-learning and is illustrated using a medical data set.
A Methodological model to assist the optimization and risk management of mining investment decisions
Resumo:
Identifying, quantifying, and minimizing technical risks associated with investment decisions is a key challenge for mineral industry decision makers and investors. However, risk analysis in most bankable mine feasibility studies are based on the stochastic modelling of project “Net Present Value” (NPV)which, in most cases, fails to provide decision makers with a truly comprehensive analysis of risks associated with technical and management uncertainty and, as a result, are of little use for risk management and project optimization. This paper presents a value-chain risk management approach where project risk is evaluated for each step of the project lifecycle, from exploration to mine closure, and risk management is performed as a part of a stepwise value-added optimization process.
Resumo:
Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.
Resumo:
Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.
Resumo:
Includes bibliographical references.
Resumo:
The ability to accurately predict the lifetime of building components is crucial to optimizing building design, material selection and scheduling of required maintenance. This paper discusses a number of possible data mining methods that can be applied to do the lifetime prediction of metallic components and how different sources of service life information could be integrated to form the basis of the lifetime prediction model
Resumo:
This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data
Resumo:
Queensland University of Technology (QUT) is faced with a rapidly growing research agenda built upon a strategic research capacity-building program. This presentation will outline the results of a project that has recently investigated QUT’s research support requirements and which has developed a model for the support of eResearch across the university. QUT’s research building strategy has produced growth at the faculty level and within its research institutes. This increased research activity is pushing the need for university-wide eResearch platforms capable of providing infrastructure and support in areas such as collaboration, data, networking, authentication and authorisation, workflows and the grid. One of the driving forces behind the investigation is data-centric nature of modern research. It is now critical that researchers have access to supported infrastructure that allows the collection, analysis, aggregation and sharing of large data volumes for exploration and mining in order to gain new insights and to generate new knowledge. However, recent surveys into current research data management practices by the Australian Partnership for Sustainable Repositories (APSR) and by QUT itself, has revealed serious shortcomings in areas such as research data management, especially its long term maintenance for reuse and authoritative evidence of research findings. While these internal university pressures are building, at the same time there are external pressures that are magnifying them. For example, recent compliance guidelines from bodies such as the ARC, and NHMRC and Universities Australia indicate that institutions need to provide facilities for the safe and secure storage of research data along with a surrounding set of policies, on its retention, ownership and accessibility. The newly formed Australian National Data Service (ANDS) is developing strategies and guidelines for research data management and research institutions are a central focus, responsible for managing and storing institutional data on platforms that can be federated nationally and internationally for wider use. For some time QUT has recognised the importance of eResearch and has been active in a number of related areas: ePrints to digitally publish research papers, grid computing portals and workflows, institutional-wide provisioning and authentication systems, and legal protocols for copyright management. QUT also has two widely recognised centres focused on fundamental research into eResearch itself: The OAK LAW project (Open Access to Knowledge) which focuses upon legal issues relating eResearch and the Microsoft QUT eResearch Centre whose goal is to accelerate scientific research discovery, through new smart software. In order to better harness all of these resources and improve research outcomes, the university recently established a project to investigate how it might better organise the support of eResearch. This presentation will outline the project outcomes, which include a flexible and sustainable eResearch support service model addressing short and longer term research needs, identification of resource requirements required to establish and sustain the service, and the development of research data management policies and implementation plans.