927 resultados para Modal Logic
Resumo:
There are mainly two known approaches to the representation of temporal information in Computer Science: modal logic approaches (including tense logics and hybrid temporal logics) and predicate logic approaches (including temporal argument methods and reified temporal logics). On one hand, while tense logics, hybrid temporal logics and temporal argument methods enjoy formal theoretical foundations, their expressiveness has been criticised as not power enough for representing general temporal knowledge; on the other hand, although current reified temporal logics provide greater expressive power, most of them lack of complete and sound axiomatic theories. In this paper, we propose a new reified temporal logic with a clear syntax and semantics in terms of a sound and complete axiomatic formalism which retains all the expressive power of the approach of temporal reification.
Resumo:
Dynamic logic is an extension of modal logic originally intended for reasoning about computer programs. The method of proving correctness of properties of a computer program using the well-known Hoare Logic can be implemented by utilizing the robustness of dynamic logic. For a very broad range of languages and applications in program veri cation, a theorem prover named KIV (Karlsruhe Interactive Veri er) Theorem Prover has already been developed. But a high degree of automation and its complexity make it di cult to use it for educational purposes. My research work is motivated towards the design and implementation of a similar interactive theorem prover with educational use as its main design criteria. As the key purpose of this system is to serve as an educational tool, it is a self-explanatory system that explains every step of creating a derivation, i.e., proving a theorem. This deductive system is implemented in the platform-independent programming language Java. In addition, a very popular combination of a lexical analyzer generator, JFlex, and the parser generator BYacc/J for parsing formulas and programs has been used.
Resumo:
Inspired by the recent work on approximations of classical logic, we present a method that approximates several modal logics in a modular way. Our starting point is the limitation of the n-degree of introspection that is allowed, thus generating modal n-logics. The semantics for n-logics is presented, in which formulas are evaluated with respect to paths, and not possible worlds. A tableau-based proof system is presented, n-SST, and soundness and completeness is shown for the approximation of modal logics K, T, D, S4 and S5. (c) 2008 Published by Elsevier B.V.
Resumo:
Formalization of logical systems in natural deduction brings many metatheoretical advantages, which Normalization proof is always highlighted. Modal logic systems, until very recently, were not routinely formalized in natural deduction, though some formulations and Normalization proofs are known. This work is a presentation of some important known systems of modal logic in natural deduction, and some Normalization procedures for them, but it is also and mainly a presentation of a hierarchy of modal logic systems in natural deduction, from K until S5, together with an outline of a Normalization proof for the system K, which is a model for Normalization in other systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Non-normal modal logics, quantification, and deontic dilemmas. A study in multi-relational semantics
Resumo:
This dissertation is devoted to the study of non-normal (modal) systems for deontic logics, both on the propositional level, and on the first order one. In particular we developed our study the Multi-relational setting that generalises standard Kripke Semantics. We present new completeness results concerning the semantic setting of several systems which are able to handle normative dilemmas and conflicts. Although primarily driven by issues related to the legal and moral field, these results are also relevant for the more theoretical field of Modal Logic itself, as we propose a syntactical, and semantic study of intermediate systems between the classical propositional calculus CPC and the minimal normal modal logic K.
Resumo:
The Logic of Proofs~LP, introduced by Artemov, encodes the same reasoning as the modal logic~S4 using proofs explicitly present in the language. In particular, Artemov showed that three operations on proofs (application~$\cdot$, positive introspection~!, and sum~+) are sufficient to mimic provability concealed in S4~modality. While the first two operations go back to G{\"o}del, the exact role of~+ remained somewhat unclear. In particular, it was not known whether the other two operations are sufficient by themselves. We provide a positive answer to this question under a very weak restriction on the axiomatization of LP.
Resumo:
A Hennessy-Milner property, relating modal equivalence and bisimulations, is defined for many-valued modal logics that combine a local semantics based on a complete MTL-chain (a linearly ordered commutative integral residuated lattice) with crisp Kripke frames. A necessary and sufficient algebraic condition is then provided for the class of image-finite models of these logics to admit the Hennessy-Milner property. Complete characterizations are obtained in the case of many-valued modal logics based on BL-chains (divisible MTL-chains) that are finite or have universe [0,1], including crisp Lukasiewicz, Gödel, and product modal logics.
Resumo:
Semiotic components in the relations of complex systems depend on the Subject. There are two main semiotic components: Neutrosophic and Modal. Modal components are alethical and deontical. In this paper the authors applied the theory of Neutrosophy and Modal Logic to Deontical Impure Systems.
Resumo:
A Quantified Autoepistemic Logic is axiomatized in a monotonic Modal Quantificational Logic whose modal laws are slightly stronger than S5. This Quantified Autoepistemic Logic obeys all the laws of First Order Logic and its L predicate obeys the laws of S5 Modal Logic in every fixed-point. It is proven that this Logic has a kernel not containing L such that L holds for a sentence if and only if that sentence is in the kernel. This result is important because it shows that L is superfluous thereby allowing the ori ginal equivalence to be simplified by eliminating L from it. It is also shown that the Kernel of Quantified Autoepistemic Logic is a generalization of Quantified Reflective Logic, which coincides with it in the propositional case.
Resumo:
Reflective Logic and Default Logic are both generalized so as to allow universally quantified variables to cross modal scopes whereby the Barcan formula and its converse hold. This is done by representing both the fixed-point equation for Reflective Logic and the fixed-point equation for Default both as necessary equivalences in the Modal Quantificational Logic Z. and then inserting universal quantifiers before the defaults. The two resulting systems, called Quantified Reflective Logic and Quantified Default Logic, are then compared by deriving metatheorems of Z that express their relationships. The main result is to show that every solution to the equivalence for Quantified Default Logic is a strongly grounded solution to the equivalence for Quantified Reflective Logic. It is further shown that Quantified Reflective Logic and Quantified Default Logic have exactly the same solutions when no default has an entailment condition.