957 resultados para Mobile Robots Navigation
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
In this paper a new PCA-based positioning sensor and localization system for mobile robots to operate in unstructured environments (e. g. industry, services, domestic ...) is proposed and experimentally validated. The inexpensive positioning system resorts to principal component analysis (PCA) of images acquired by a video camera installed onboard, looking upwards to the ceiling. This solution has the advantage of avoiding the need of selecting and extracting features. The principal components of the acquired images are compared with previously registered images, stored in a reduced onboard image database, and the position measured is fused with odometry data. The optimal estimates of position and slippage are provided by Kalman filters, with global stable error dynamics. The experimental validation reported in this work focuses on the results of a set of experiments carried out in a real environment, where the robot travels along a lawn-mower trajectory. A small position error estimate with bounded co-variance was always observed, for arbitrarily long experiments, and slippage was estimated accurately in real time.
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
ACCURATE sensing of vehicle position and attitude is still a very challenging problem in many mobile robot applications. The mobile robot vehicle applications must have some means of estimating where they are and in which direction they are heading. Many existing indoor positioning systems are limited in workspace and robustness because they require clear lines-of-sight or do not provide absolute, driftfree measurements.The research work presented in this dissertation provides a new approach to position and attitude sensing system designed specifically to meet the challenges of operation in a realistic, cluttered indoor environment, such as that of an office building, hospital, industrial or warehouse. This is accomplished by an innovative assembly of infrared LED source that restricts the spreading of the light intensity distribution confined to a sheet of light and is encoded with localization and traffic information. This Digital Infrared Sheet of Light Beacon (DISLiB) developed for mobile robot is a high resolution absolute localization system which is simple, fast, accurate and robust, without much of computational burden or significant processing. Most of the available beacon's performance in corridors and narrow passages are not satisfactory, whereas the performance of DISLiB is very encouraging in such situations. This research overcomes most of the inherent limitations of existing systems.The work further examines the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. A simple and efficient method is investigated and realized using an FPGA for reducing the errors. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle.The application of encoded Digital Infrared Sheet of Light Beacon (DISLiB) system can be extended to intelligent control of the public transportation system. The system is capable of receiving traffic status input through a GSM (Global System Mobile) modem. The vehicles have infrared receivers and processors capable of decoding the information, and generating the audio and video messages to assist the driver. The thesis further examines the usefulness of the technique to assist the movement of differently-able (blind) persons in indoor or outdoor premises of his residence.The work addressed in this thesis suggests a new way forward in the development of autonomous robotics and guidance systems. However, this work can be easily extended to many other challenging domains, as well.
Resumo:
This paper introduces a simple and efficient method and its implementation in an FPGA for reducing the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle. The standard quadrature technique is used to obtain four counts in each encoder period. In this work a three-wheeled mobile robot vehicle with one driving-steering wheel and two-fixed rear wheels in-axis, fitted with incremental optical encoders is considered. The CORDIC algorithm has been used for the computation of sine and cosine terms in the update equations. The results presented demonstrate the effectiveness of the technique
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
This paper presents the development of an indoor localization system using camera vision. The localization system has a capability to determine 2D coordinate (x, y) for a team of mobile robots, Miabot. The experimental results show that the system outperforms our existing sonar localizer both in accuracy and a precision.
Resumo:
A number of Intelligent Mobile Robots have been developed at the University of Reading. They are completely autonomous in that no umbilical cord attaches to them to extra power supplies or computer station: further, they are not radio controlled. In this paper, the robots are discussed, in their various forms, and the individual behaviours and characteristics which appear are considered.
Resumo:
Localization and Mapping are two of the most important capabilities for autonomous mobile robots and have been receiving considerable attention from the scientific computing community over the last 10 years. One of the most efficient methods to address these problems is based on the use of the Extended Kalman Filter (EKF). The EKF simultaneously estimates a model of the environment (map) and the position of the robot based on odometric and exteroceptive sensor information. As this algorithm demands a considerable amount of computation, it is usually executed on high end PCs coupled to the robot. In this work we present an FPGA-based architecture for the EKF algorithm that is capable of processing two-dimensional maps containing up to 1.8 k features at real time (14 Hz), a three-fold improvement over a Pentium M 1.6 GHz, and a 13-fold improvement over an ARM920T 200 MHz. The proposed architecture also consumes only 1.3% of the Pentium and 12.3% of the ARM energy per feature.
Resumo:
Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.
Resumo:
MEDEIROS, Adelardo A. D.A survey of control architectures for autonomous mobile robots. J. Braz. Comp. Soc., Campinas, v. 4, n. 3, abr. 1998 .Disponível em:
Resumo:
This paper describes the UNESP robotic team in the medical trash collector task, proposed on the 5 rd IEEE Latin American Robots Competition in the LEGO category. We present our understanding of the task and discuss the proposed solution, focusing on the mechanical and computational issues of the robots. The mechanics is based on rigid body capability of transforming rotational into curvilinear movement. With respect to the computational control, the system is modeled as a reactive system with sequential transition of behaviors. A state-machine is proposed to allow this transition, and the synchronization of robotic states is guaranteed by the communication system. The proposed approach has shown itself capable of dealing with the high difficulty degree of this cooperative task. ©2006 IEEE.
Resumo:
With the fast innovation of the hardware and software technologies using rapid prototyping devices, with application in the robotics and automation, more and more it becomes necessary the development of applications based on methodologies that facilitate future modifications, updates and enhancements in the original projected system. This paper presents a conception of mobile robots using rapid prototyping, distributing the several control actions in growing levels of complexity and using resources of reconfigurable computing proposal oriented to embed systems implementation. Software and the hardware are structuralized in independents blocks, with connection through common bus. The study and applications of new structures control that permits good performance in relation to the parameter variations. This kind of controller can be tested on different platform representing the wheeled mobile robots using reprogrammable logic components (FPGA). © 2006 IEEE.
Resumo:
Localization is information of fundamental importance to carry out various tasks in the mobile robotic area. The exact degree of precision required in the localization depends on the nature of the task. The GPS provides global position estimation but is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras are commonly used for position estimation, but these require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of vision. Currently, Wireless Networks (WN) are widely available in indoor environments and can allow efficient global localization that requires relatively low computing resources. However, the inherent instability in the wireless signal prevents it from being used for very accurate position estimation. The growth in the number of Access Points (AP) increases the overlap signals areas and this could be a useful means of improving the precision of the localization. In this paper we evaluate the impact of the number of Access Points in mobile nodes localization using Artificial Neural Networks (ANN). We use three to eight APs as a source signal and show how the ANNs learn and generalize the data. Added to this, we evaluate the robustness of the ANNs and evaluate a heuristic to try to decrease the error in the localization. In order to validate our approach several ANNs topologies have been evaluated in experimental tests that were conducted with a mobile node in an indoor space.
Resumo:
La mayor parte de los entornos diseñados por el hombre presentan características geométricas específicas. En ellos es frecuente encontrar formas poligonales, rectangulares, circulares . . . con una serie de relaciones típicas entre distintos elementos del entorno. Introducir este tipo de conocimiento en el proceso de construcción de mapas de un robot móvil puede mejorar notablemente la calidad y la precisión de los mapas resultantes. También puede hacerlos más útiles de cara a un razonamiento de más alto nivel. Cuando la construcción de mapas se formula en un marco probabilístico Bayesiano, una especificación completa del problema requiere considerar cierta información a priori sobre el tipo de entorno. El conocimiento previo puede aplicarse de varias maneras, en esta tesis se presentan dos marcos diferentes: uno basado en el uso de primitivas geométricas y otro que emplea un método de representación cercano al espacio de las medidas brutas. Un enfoque basado en características geométricas supone implícitamente imponer un cierto modelo a priori para el entorno. En este sentido, el desarrollo de una solución al problema SLAM mediante la optimización de un grafo de características geométricas constituye un primer paso hacia nuevos métodos de construcción de mapas en entornos estructurados. En el primero de los dos marcos propuestos, el sistema deduce la información a priori a aplicar en cada caso en base a una extensa colección de posibles modelos geométricos genéricos, siguiendo un método de Maximización de la Esperanza para hallar la estructura y el mapa más probables. La representación de la estructura del entorno se basa en un enfoque jerárquico, con diferentes niveles de abstracción para los distintos elementos geométricos que puedan describirlo. Se llevaron a cabo diversos experimentos para mostrar la versatilidad y el buen funcionamiento del método propuesto. En el segundo marco, el usuario puede definir diferentes modelos de estructura para el entorno mediante grupos de restricciones y energías locales entre puntos vecinos de un conjunto de datos del mismo. El grupo de restricciones que se aplica a cada grupo de puntos depende de la topología, que es inferida por el propio sistema. De este modo, se pueden incorporar nuevos modelos genéricos de estructura para el entorno con gran flexibilidad y facilidad. Se realizaron distintos experimentos para demostrar la flexibilidad y los buenos resultados del enfoque propuesto. Abstract Most human designed environments present specific geometrical characteristics. In them, it is easy to find polygonal, rectangular and circular shapes, with a series of typical relations between different elements of the environment. Introducing this kind of knowledge in the mapping process of mobile robots can notably improve the quality and accuracy of the resulting maps. It can also make them more suitable for higher level reasoning applications. When mapping is formulated in a Bayesian probabilistic framework, a complete specification of the problem requires considering a prior for the environment. The prior over the structure of the environment can be applied in several ways; this dissertation presents two different frameworks, one using a feature based approach and another one employing a dense representation close to the measurements space. A feature based approach implicitly imposes a prior for the environment. In this sense, feature based graph SLAM was a first step towards a new mapping solution for structured scenarios. In the first framework, the prior is inferred by the system from a wide collection of feature based priors, following an Expectation-Maximization approach to obtain the most probable structure and the most probable map. The representation of the structure of the environment is based on a hierarchical model with different levels of abstraction for the geometrical elements describing it. Various experiments were conducted to show the versatility and the good performance of the proposed method. In the second framework, different priors can be defined by the user as sets of local constraints and energies for consecutive points in a range scan from a given environment. The set of constraints applied to each group of points depends on the topology, which is inferred by the system. This way, flexible and generic priors can be incorporated very easily. Several tests were carried out to demonstrate the flexibility and the good results of the proposed approach.