955 resultados para Mixture Distributions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is intended to discuss various properties and reliability aspects of higher order equilibrium distributions in continuous, discrete and multivariate cases, which contribute to the study on equilibrium distributions. At first, we have to study and consolidate the existing literature on equilibrium distributions. For this we need some basic concepts in reliability. These are being discussed in the 2nd chapter, In Chapter 3, some identities connecting the failure rate functions and moments of residual life of the univariate, non-negative continuous equilibrium distributions of higher order and that of the baseline distribution are derived. These identities are then used to characterize the generalized Pareto model, mixture of exponentials and gamma distribution. An approach using the characteristic functions is also discussed with illustrations. Moreover, characterizations of ageing classes using stochastic orders has been discussed. Part of the results of this chapter has been reported in Nair and Preeth (2009). Various properties of equilibrium distributions of non-negative discrete univariate random variables are discussed in Chapter 4. Then some characterizations of the geo- metric, Waring and negative hyper-geometric distributions are presented. Moreover, the ageing properties of the original distribution and nth order equilibrium distribu- tions are compared. Part of the results of this chapter have been reported in Nair, Sankaran and Preeth (2012). Chapter 5 is a continuation of Chapter 4. Here, several conditions, in terms of stochastic orders connecting the baseline and its equilibrium distributions are derived. These conditions can be used to rede_ne certain ageing notions. Then equilibrium distributions of two random variables are compared in terms of various stochastic orders that have implications in reliability applications. In Chapter 6, we make two approaches to de_ne multivariate equilibrium distribu- tions of order n. Then various properties including characterizations of higher order equilibrium distributions are presented. Part of the results of this chapter have been reported in Nair and Preeth (2008). The Thesis is concluded in Chapter 7. A discussion on further studies on equilib- rium distributions is also made in this chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of estimating the individual probabilities of a discrete distribution is considered. The true distribution of the independent observations is a mixture of a family of power series distributions. First, we ensure identifiability of the mixing distribution assuming mild conditions. Next, the mixing distribution is estimated by non-parametric maximum likelihood and an estimator for individual probabilities is obtained from the corresponding marginal mixture density. We establish asymptotic normality for the estimator of individual probabilities by showing that, under certain conditions, the difference between this estimator and the empirical proportions is asymptotically negligible. Our framework includes Poisson, negative binomial and logarithmic series as well as binomial mixture models. Simulations highlight the benefit in achieving normality when using the proposed marginal mixture density approach instead of the empirical one, especially for small sample sizes and/or when interest is in the tail areas. A real data example is given to illustrate the use of the methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimation of a population size by means of capture-recapture techniques is an important problem occurring in many areas of life and social sciences. We consider the frequencies of frequencies situation, where a count variable is used to summarize how often a unit has been identified in the target population of interest. The distribution of this count variable is zero-truncated since zero identifications do not occur in the sample. As an application we consider the surveillance of scrapie in Great Britain. In this case study holdings with scrapie that are not identified (zero counts) do not enter the surveillance database. The count variable of interest is the number of scrapie cases per holding. For count distributions a common model is the Poisson distribution and, to adjust for potential heterogeneity, a discrete mixture of Poisson distributions is used. Mixtures of Poissons usually provide an excellent fit as will be demonstrated in the application of interest. However, as it has been recently demonstrated, mixtures also suffer under the so-called boundary problem, resulting in overestimation of population size. It is suggested here to select the mixture model on the basis of the Bayesian Information Criterion. This strategy is further refined by employing a bagging procedure leading to a series of estimates of population size. Using the median of this series, highly influential size estimates are avoided. In limited simulation studies it is shown that the procedure leads to estimates with remarkable small bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generalize the popular ensemble Kalman filter to an ensemble transform filter, in which the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian-mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions and the three-dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable of tracking systems with non-Gaussian uni- and multimodal ensemble distributions. Copyright © 2011 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lyotropic nematics consisting of surfactant-cosurfactant water solutions may present a biaxial phase or direct U(+) <-> U(-) transitions, in different regions of the temperature-relative concentration phase diagram, for different systems and compositions. We propose that these may be related to changes of uniaxial micellar form, which may occur either smoothly or abruptly. Smooth change of cylinder-like into disc-like shapes requires a distribution of Maier-Saupe interaction constants and we consider two limiting cases for the distribution of forms: a single Gaussian and a double Gaussian. Alternatively, an abrupt change of form is described by a discontinuous distribution of interaction constants. Our results show that the dispersive distributions yield a biaxial phase, while an abrupt change of shape leads to coexistence of uniaxial phases. Fitting the theory to the experiment for the ternary system KL/decanol/D2O leads to transition lines in very good agreement with experimental results. In order to rationalise the results of the comparison, we analyse temperature and concentration form dependence, which connects micellar and experimental macroscopic parameters. Physically consistent variations of micellar asymmetry, amphiphile partitioning and volume are obtained. To the best of the authors` knowledge, this is the first truly statistical microscopic approach that is able to model experimentally observed lyotropic biaxial nematic phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the issue of modeling fractional data observed on [0,1), (0,1] or [0,1]. Mixed continuous-discrete distributions are proposed. The beta distribution is used to describe the continuous component of the model since its density can have quite different shapes depending on the values of the two parameters that index the distribution. Properties of the proposed distributions are examined. Also, estimation based on maximum likelihood and conditional moments is discussed. Finally, practical applications that employ real data are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we introduce an asymmetric extension to the univariate slash-elliptical family of distributions studied in Gomez et al. (2007a). This new family results from a scale mixture between the epsilon-skew-symmetric family of distributions and the uniform distribution. A general expression is presented for the density with special cases such as the normal, Cauchy, Student-t, and Pearson type II distributions. Some special properties and moments are also investigated. Results of two real data sets applications are also reported, illustrating the fact that the family introduced can be useful in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let P be a probability distribution on q -dimensional space. The so-called Diaconis-Freedman effect means that for a fixed dimension d<mixture of spherically symmetric Gaussian distributions. The present paper provides necessary and sufficient conditions for this phenomenon in a suitable asymptotic framework with increasing dimension q . It turns out, that the conditions formulated by Diaconis and Freedman (1984) are not only sufficient but necessary as well. Moreover, letting P ^ be the empirical distribution of n independent random vectors with distribution P , we investigate the behavior of the empirical process n √ (P ^ −P) under random projections, conditional on P ^ .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Groundwater age is a key aspect of production well vulnerability. Public drinking water supply wells typically have long screens and are expected to produce a mixture of groundwater ages. The groundwater age distributions of seven production wells of the Holten well field (Netherlands) were estimated from tritium-helium (3H/3He), krypton-85 (85Kr), and argon-39 (39Ar), using a new application of a discrete age distribution model and existing mathematical models, by minimizing the uncertainty-weighted squared differences of modeled and measured tracer concentrations. The observed tracer concentrations fitted well to a 4-bin discrete age distribution model or a dispersion model with a fraction of old groundwater. Our results show that more than 75 of the water pumped by four shallow production wells has a groundwater age of less than 20 years and these wells are very vulnerable to recent surface contamination. More than 50 of the water pumped by three deep production wells is older than 60 years. 3H/3He samples from short screened monitoring wells surrounding the well field constrained the age stratification in the aquifer. The discrepancy between the age stratification with depth and the groundwater age distribution of the production wells showed that the well field preferentially pumps from the shallow part of the aquifer. The discrete groundwater age distribution model appears to be a suitable approach in settings where the shape of the age distribution cannot be assumed to follow a simple mathematical model, such as a production well field where wells compete for capture area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minimization of a sum-of-squares or cross-entropy error function leads to network outputs which approximate the conditional averages of the target data, conditioned on the input vector. For classifications problems, with a suitably chosen target coding scheme, these averages represent the posterior probabilities of class membership, and so can be regarded as optimal. For problems involving the prediction of continuous variables, however, the conditional averages provide only a very limited description of the properties of the target variables. This is particularly true for problems in which the mapping to be learned is multi-valued, as often arises in the solution of inverse problems, since the average of several correct target values is not necessarily itself a correct value. In order to obtain a complete description of the data, for the purposes of predicting the outputs corresponding to new input vectors, we must model the conditional probability distribution of the target data, again conditioned on the input vector. In this paper we introduce a new class of network models obtained by combining a conventional neural network with a mixture density model. The complete system is called a Mixture Density Network, and can in principle represent arbitrary conditional probability distributions in the same way that a conventional neural network can represent arbitrary functions. We demonstrate the effectiveness of Mixture Density Networks using both a toy problem and a problem involving robot inverse kinematics.