992 resultados para Micro-simulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calibration process in micro-simulation is an extremely complicated phenomenon. The difficulties are more prevalent if the process encompasses fitting aggregate and disaggregate parameters e.g. travel time and headway. The current practice in calibration is more at aggregate level, for example travel time comparison. Such practices are popular to assess network performance. Though these applications are significant there is another stream of micro-simulated calibration, at disaggregate level. This study will focus on such micro-calibration exercise-key to better comprehend motorway traffic risk level, management of variable speed limit (VSL) and ramp metering (RM) techniques. Selected section of Pacific Motorway in Brisbane will be used as a case study. The discussion will primarily incorporate the critical issues encountered during parameter adjustment exercise (e.g. vehicular, driving behaviour) with reference to key traffic performance indicators like speed, land distribution and headway; at specific motorway points. The endeavour is to highlight the utility and implications of such disaggregate level simulation for improved traffic prediction studies. The aspects of calibrating for points in comparison to that for whole of the network will also be briefly addressed to examine the critical issues such as the suitability of local calibration at global scale. The paper will be of interest to transport professionals in Australia/New Zealand where micro-simulation in particular at point level, is still comparatively a less explored territory in motorway management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study is to assess the potential use of Bluetooth data for traffic monitoring of arterial road networks. Bluetooth data provides the direct measurement of travel time between pairs of scanners, and intensive research has been reported on this topic. Bluetooth data includes “Duration” data, which represents the time spent by Bluetooth devices to pass through the detection range of Bluetooth scanners. If the scanners are located at signalised intersections, this Duration can be related to intersection performance, and hence represents valuable information for traffic monitoring. However the use of Duration has been ignored in previous analyses. In this study, the Duration data as well as travel time data is analysed to capture the traffic condition of a main arterial route in Brisbane. The data consists of one week of Bluetooth data provided by Brisbane City Council. As well, micro simulation analysis is conducted to further investigate the properties of Duration. The results reveal characteristics of Duration, and address future research needs to utilise this valuable data source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers exhibit safe behaviors. All the microscopic traffic simulation models include a car following model. This paper highlights the limitations of the Gipps car following model ability to emulate driver behavior for safety study purposes. A safety adapted car following model based on the Gipps car following model is proposed to simulate unsafe vehicle movements, with safety indicators below critical thresholds. The modifications are based on the observations of driver behavior in real data and also psychophysical notions. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time To Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against them. The results from simulation tests illustrate that the proposed model can predict the safety metrics better than the generic Gipps model. The outcome of this paper can potentially facilitate assessing and predicting traffic safety using microscopic simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traffic safety studies mandate more than what existing micro-simulation models can offer as they postulate that every driver exhibits a safe behaviour. All the microscopic traffic simulation models are consisting of a car-following model and the Gazis–Herman–Rothery (GHR) car-following model is a widely used model. This paper highlights the limitations of the GHR car-following model capability to model longitudinal driving behaviour for safety study purposes. This study reviews and compares different version of the GHR model. To empower the GHR model on precise metrics reproduction a new set of car-following model parameters is offered to simulate unsafe vehicle conflicts. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time to Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against the generic versions of the GHR model. The results from simulation tests illustrate that the proposed model does predict the safety metrics better than the generic GHR model. Additionally it can potentially facilitate assessing and predicting traffic facilities’ safety using microscopic simulation. The new model can predict Near-miss rear-end crashes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research investigated strategies for motorway congestion management from a different angle: that is, how to quickly recover motorway from congestion at the end of peak hours, given congestion cannot be eliminated due to excessive demand during the long peak hours nowadays. The project developed a zone recovery strategy using ramp metering for rapid congestion recovery, and a serious of traffic simulation investigations were included to evaluate the developed strategy. The results, from both microscopic and macroscopic simulation, demonstrated the effectiveness of the zone recovery strategy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ramp signalling is an access control for motorways, in which a traffic signal is placed at on-ramps to regulate the rate of vehicles entering the motorway and thus to preserve the motorway capacity. In general, ramp signalling algorithms fall into two categories: local control and coordinated control by their effective scope. Coordinated ramp signalling strategies make use of measurements from the entire motorway network to operate individual ramp signals for the optimal performances at the network level. This study proposes a multi-hierarchical strategy for coordinated ramp signalling. The strategy is structured in two layers. At the higher layer with a longer update interval, coordination group is assembled and disassembled based on the location of high-risk breakdown flow. At the lower layer with a shorter update interval, individual ramps are hired to serve the coordination and are also released based on the prevailing congestion level on the ramp. This strategy is modelled and applied to the northbound Pacific Motorway micro-simulation platform (AIMSUN). The simulation results show an effective congestion mitigation of the proposed strategy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recurrent congestion caused by high commuter traffic is an irritation to motorway users. Ramp metering (RM) is the most effective motorway control means (M Papageorgiou & Kotsialos, 2002) for significantly reducing motorway congestion. However, given field constraints (e.g. limited ramp space and maximum ramp waiting time), RM cannot eliminate recurrent congestion during the increased long peak hours. This paper, therefore, focuses on rapid congestion recovery to further improve RM systems: that is, to quickly clear congestion in recovery periods. The feasibility of using RM for recovery is analyzed, and a zone recovery strategy (ZRS) for RM is proposed. Note that this study assumes no incident and demand management involved, i.e. no re-routing behavior and strategy considered. This strategy is modeled, calibrated and tested in the northbound model of the Pacific Motorway, Brisbane, Australia in a micro-simulation environment for recurrent congestion scenario, and evaluation results have justified its effectiveness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Busway stations are the interface between passengers and services. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses manoeuvring into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. Further, some systems include operation where express buses do not observe the station, resulting in a proportion of non-stopping buses. It is important to understand the operation of the station under this type of operation and its effect on busway capacity. This study uses microscopic simulation to treat the busway station operation and to analyse the relationship between station potential capacity where all buses stop, and Mixed Potential Capacity where there is a mixture of stopping and non-stopping buses. First, the micro simulation technique is used to analyze the All Stopping Buses (ASB) scenario and then statistical model is tuned and calibrated for a specified range of controlled scenarios of dwell time characteristics Subsequently, a mathematical model is developed for Mixed Stopping Buses (MSB) Potential Capacity by introducing different proportions of express (or non-stopping) buses. The proposed models for a busway station bus capacity provide a better understanding of operation and are useful to transit agencies in busway planning, design and operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Busway stations are the interface between passengers and services. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses manoeuvring into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. Further, some systems include operation where express buses do not observe the station, resulting in a proportion of non-stopping buses. It is important to understand the operation of the station under this type of operation and its effect on busway capacity. This study uses microscopic simulation to treat the busway station operation and to analyse the relationship between station potential capacity where all buses stop, and Mixed Potential Capacity where there is a mixture of stopping and non-stopping buses. First, the micro simulation technique is used to analyze the All Stopping Buses (ASB) scenario and then statistical model is tuned and calibrated for a specified range of controlled scenarios of dwell time characteristics Subsequently, a mathematical model is developed for Mixed Stopping Buses (MSB) Potential Capacity by introducing different proportions of express (or non-stopping) buses. The proposed models for a busway station bus capacity provide a better understanding of operation and are useful to transit agencies in busway planning, design and operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ramp metering (RM) is an access control for motorways, in which a traffic signal is placed at on-ramps to regulate the rate of vehicles entering the motorway and thus to preserve the motorway capacity. In general, RM algorithms fall into two categories by their effective scope: local control and coordinated control. Local control algorithm determines the metering rate based on the traffic condition on adjacent motorway mainline and the on-ramp. Conversely, coordinated RM strategies make use of measurements from the entire motorway network to operate individual ramp signals for optimal performance at the network level. This study proposes a multi-hierarchical strategy for on-ramp coordination. The strategy is structured in two layers. At the higher layer, a centralised, predictive controller plans the coordination control within a long update interval based on the location of high-risk breakdown flow. At the lower layer, reactive controllers determine the metering rates of those ramps involved in the ramp coordination with a short update interval. This strategy is modelled and applied to the northbound model of the Pacific Motorway in a micro-simulation platform (AIMSUN). The simulation results show that the proposed strategy effectively delays the onset of congestion and reduces total congestion with better managed on-ramp queues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction:
Cervical cancer screening has been implemented for over a decade in Australia and has significantly reduced the mortality and morbidity of the disease. The emergence of new technologies for cervical cancer, such as the Human Papillomavirus (HPV) vaccine and DNA testing has encouraged debate regarding the effective use of resources in cervical cancer prevention. The present study evaluates the cost-effectiveness, from a health sector perspective, of various screening strategies in the era of these new technologies.

Methods:
A stochastic epidemiological model using a discrete event and continuous algorithm was developed to describe the natural history of cervical cancer. By allowing one member of the cohort into the model at a time, this micro-simulation model encompasses the characteristics of heterogeneity and can track individual life histories. To evaluate the cost-effectiveness of the HPV vaccine a Markov model was built to simulate the effect on the incidence of HPV and subsequent cervical cancer. A number of proposed screening strategies were evaluated with the stochastic model for the application of HPV DNA testing, with changes in the screening interval and target population. Health outcomes were measured by Disability-Adjusted Life-Years (DALYs), adjusted for application within an evaluation setting (i.e. the mortality component of the DALY was adjusted by a disability weight when early mortality due to cervical cancer is avoided). Costs in complying with the Australian updated guidelines were assessed by pathway analysis to estimate the resources associated with cervical cancer and its pre-cancerous lesion treatment. Sensitivity analyses were performed to investigate the key parameters that influenced the cost-effectiveness results.

Results:
Current practice has already brought huge health gain by preventing more than 4,000 deaths and saving more than 86,000 life-years in a cohort of a million women. Any of the alternative screening strategies alter the total amount of health gain by a small margin compared to current practice. The results of incremental analyses of the alternative screening strategies compared to current practice suggest the adoption of the HPV DNA test as a primary screening tool every 3 years commencing at age 18, or the combined pap smear/HPV test every 3 years commencing at age 25, are more costly than current practice but with reasonable ICERs (AUD$1,810 per DALY and AUD$18,600 per DALY respectively). Delaying commencement of Pap test screening to age 25 is less costly than current practice, but involves considerable health loss. The sensitivity analysis shows, however, that the screening test accuracy has a significant impact on these conclusions. Threshold analysis indicates that a sensitivity ranging from 0.80 to 0.86 for the combined test in women younger than 30 is required to produce an acceptable incremental cost-effectiveness ratio.

Conclusions:
The adoption of HPV and combined test with an extended screening interval is more costly but affordable, resulting in reasonable ICERs. They appear good value for money for the Australian health care system, but need more information on test accuracy to make an informed decision. Potential screening policy change under current Australian HPV Vaccination Program is current work in progress. A Markov model is built to simulate the effect on the incidence of HPV and subsequent cervical cancer. Adoption of HPV DNA test as a primary screening tool in the context of HPV vaccination is under evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A representative study among e-bike owners and tenants in Switzerland (n = 1652) provides a deeper understanding of e-bike users characteristics, motives, values, usage behavior, and barriers to the use. In a micro simulation the implications of the findings for the energy demand and CO2 emissions are estimated.