762 resultados para Metal coatings


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on the tribological performance of tool surfaces in two steel working operations, namely wire drawing and hot rolling. In all forming operations dimensions and surface finish of the products are of utmost importance. Forming basically includes three parts – forming conditions excluded – that may be changed; work material, tool and (possibly) lubricant. In the interface between work material and tool, the conditions are very aggressive with – generally or locally – high temperatures and pressures. The surfaces will be worn in various ways and this will change the conditions in the process. Consequently, the surface finish as well as the dimensions of the formed product may change and in the end, the product will not fulfil the requirements of the customer. Therefore, research and development in regard to wear, and consequently tribology, of the forming tools is of great interest. The investigations of wire drawing dies focus on coating adhesion/cohesion, surface characteristics and material transfer onto the coated steel both in laboratory scale as well as in the wire drawing process. Results show that it in wire drawing is possible to enhance the tribological performance of drawing dies by using a lubricant together with a steel substrate coated by a polished, dual-layer coating containing both hard and friction-lowering layers. The investigations of hot rolling work rolls focus on microstructure and hardness as well as cracking- and surface characteristics in both laboratory scale and in the hot strip mill. Results show that an ideal hot work roll material should be made up of a matrix with high hardness and a large amount of complex, hard carbides evenly distributed in the microstructure. The surface failure mechanisms of work rolls are very complex involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. This knowledge may be used to develop new tools with higher wear resistance giving better performance, lower costs and lower environmental impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared with bare metal stents (BMS), early generation drug-eluting stents (DES) reduce the risk of revascularisation in patients with ST-elevation myocardial infarction (STEMI) at the expense of an increased risk of very late stent thrombosis (ST). Durable polymer coatings for controlled drug release have been identified as a potential trigger for these late adverse events and this has led to the development of newer generation DES with durable and biodegradable polymer surface coatings with improved biocompatibility. In a recent all-comers trial, biolimus-eluting stents with a biodegradable polymer surface coating were found to reduce the risk of very late ST by 80% compared with sirolimus-eluting stents with durable polymer, which also translated into a lower risk of cardiac death and myocardial infarction (MI) beyond one year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background In the present study, 4 different metallic implant materials, either partly coated or polished, were tested for their osseointegration and biocompatibility in a pelvic implantation model in sheep. Methods Materials to be evaluated were: Cobalt-Chrome (CC), Cobalt-Chrome/Titanium coating (CCTC), Cobalt-Chrome/Zirconium/Titanium coating (CCZTC), Pure Titanium Standard (PTST), Steel, TAN Standard (TANST) and TAN new finish (TANNEW). Surgery was performed on 7 sheep, with 18 implants per sheep, for a total of 63 implants. After 8 weeks, the specimens were harvested and evaluated macroscopically, radiologically, biomechanically (removal torque), histomorphometrically and histologically. Results Cobalt-Chrome screws showed significantly (p = 0.031) lower removal torque values than pure titanium screws and also a tendency towards lower values compared to the other materials, except for steel. Steel screws showed no significant differences, in comparison to cobalt-chrome and TANST, however also a trend towards lower torque values than the remaining materials. The results of the fluorescence sections agreed with those of the biomechanical test. Histomorphometrically, there were no significant differences of bone area between the groups. The BIC (bone-to-implant-contact), used for the assessment of the osseointegration, was significantly lower for cobalt-chrome, compared to steel (p = 0.001). Steel again showed a lower ratio (p = 0.0001) compared to the other materials. Conclusion This study demonstrated that cobalt-chrome and steel show less osseointegration than the other metals and metal-alloys. However, osseointegration of cobalt-chrome was improved by zirconium and/or titanium based coatings (CCTC, TANST, TAN, TANNEW) being similar as pure titanium in their osseointegrative behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In orthopaedic and dental implantology, novel tools and techniques are being sought to improve the regeneration of bone tissue. Numerous attempts have been made to enhance the osteoconductivity of titanium prostheses, including modifications in their surface properties and coating with layers of calcium phosphate. The technique whereby such layers are produced has recently undergone a revolutionary change, which has had profound consequences for their potential to serve as drug-carrier systems. Hitherto, calcium phosphate layers were deposited upon the surfaces of metal implants under highly unphysiological physical conditions, which precluded the incorporation of proteinaceous osteoinductive drugs. These agents could only be adsorbed, superficially, upon preformed layers. Such superficially adsorbed molecules are released too rapidly within a biological milieu to be effective in their osteoinductive capacity. Now, it is possible to deposit calcium phosphate layers under physiological conditions of temperature and pH by the so-called biomimetic process, during which bioactive agents can be coprecipitated. Since these molecules are integrated into the inorganic latticework, they are released gradually in vivo as the layer undergoes degradation. This feature enhances the capacity of these coatings to act as a carrier system for osteogenic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Recently, it has been suggested that the type of stent used in primary percutaneous coronary interventions (pPCI) might impact upon the outcomes of patients with acute myocardial infarction (AMI). Indeed, drug-eluting stents (DES) reduce neointimal hyperplasia compared to bare-metal stents (BMS). Moreover, the later generation DES, due to its biocompatible polymer coatings and stent design, allows for greater deliverability, improved endothelial healing and therefore less restenosis and thrombus generation. However, data on the safety and performance of DES in large cohorts of AMI is still limited. AIM To compare the early outcome of DES vs. BMS in AMI patients. METHODS This was a prospective, multicentre analysis containing patients from 64 hospitals in Switzerland with AMI undergoing pPCI between 2005 and 2013. The primary endpoint was in-hospital all-cause death, whereas the secondary endpoint included a composite measure of major adverse cardiac and cerebrovascular events (MACCE) of death, reinfarction, and cerebrovascular event. RESULTS Of 20,464 patients with a primary diagnosis of AMI and enrolled to the AMIS Plus registry, 15,026 were referred for pPCI and 13,442 received stent implantation. 10,094 patients were implanted with DES and 2,260 with BMS. The overall in-hospital mortality was significantly lower in patients with DES compared to those with BMS implantation (2.6% vs. 7.1%,p < 0.001). The overall in-hospital MACCE after DES was similarly lower compared to BMS (3.5% vs. 7.6%, p < 0.001). After adjusting for all confounding covariables, DES remained an independent predictor for lower in-hospital mortality (OR 0.51,95% CI 0.40-0.67, p < 0.001). Since groups differed as regards to baseline characteristics and pharmacological treatment, we performed a propensity score matching (PSM) to limit potential biases. Even after the PSM, DES implantation remained independently associated with a reduced risk of in-hospital mortality (adjusted OR 0.54, 95% CI 0.39-0.76, p < 0.001). CONCLUSIONS In unselected patients from a nationwide, real-world cohort, we found DES, compared to BMS, was associated with lower in-hospital mortality and MACCE. The identification of optimal treatment strategies of patients with AMI needs further randomised evaluation; however, our findings suggest a potential benefit with DES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cadmium has been widely used as a coating to provide protection against galvanic corrosion for steels and for its natural lubricity on threaded applications. However, it is a toxic metal and a known carcinogenic agent, which is plated from an aqueous bath containing cyanide salts. For these reasons, the use of cadmium has been banned in Europe for most industrial applications. However, the aerospace industry is still exempt due to the stringent technical and safety requirements associated with aeronautical applications, as an acceptable replacement is yet to be found. Al slurry coatings have been developed as an alternative to replace cadmium coatings. The coatings were deposited on AISI 4340 steel and have been characterized by optical and electron microscopy. Testing included salt fog corrosion exposure, fluid corrosion exposure (immersion), humidity resistance, coating-substrate and paint-coating adhesion, electric conductivity, galvanic corrosion, embrittlement and fatigue. The results indicated that Al slurry coatings are an excellent alternative for Cd replacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increase use of de-icing salts on roads for safety, the need for improved corrosion resistance of the traditional galvanized automobile bodies has never been greater. In the present work, Zn alloy coatings (Zn-Ni and Zn-Co) were studied as an alternative to pure Zn coatings. The production of these deposits involved formulation of various acidic (pH of about 5.5) chloride based solutions. These showed anomalous deposition, that is, alloys were deposited much more easily than expected from the noble behaviour of Ni and Co metals. Coating compositions ranging from 0 to about 37% Ni and 20% Co were obtained. The chemical composition of the coatings depended very much on the electrolytes nature and operating conditions. The Ni content of deposits increased with increase in Ni bath concentration, temperature, pH and solution agitation but decreased considerably with increase in current density. The throwing power of the Zn-Ni solution deteriorated as Ni metal bath concentration increased. The Co content of deposits also increased with increase in Co bath concentration and temperature, and decreased with increase in current density. However, the addition of commercial organic additives to Zn-Co plating solutions suppressed considerably the amount of Co in the coatings. The Co content of deposits plated from Zincrolyte solution was found to be more sensitive to variation in current density than in the case of deposits plated from the alkaline Canning solution. The chromating procedures were carried out using laboratory formulated solution and commercially available ones. The deposit surface state was of great significance in influencing the formulation of conversion coatings. Bright and smooth deposits acquired an iridescent colour when treated with the laboratory formulated solution. However, the dull deposits acquired a brownish appearance. The correlation between the electrochemical test results and the neutral salt spray in marine environment was good. Non-chromated Zn-Ni coatings containing about 11-14% Ni increased in corrosion resistance compared to pure Zn. Non-chromated Zn-Co deposits of composition 4-8% were required to show a significant improvement in corrosion resistance Corrosion resistance was improved considerably by conversion coating. However, the type of conversion coating was very important. Samples treated in a laboratory solution performed badly compared to those treated in commercial solutions. Zn alloy coatings were superior to pure Zn, the Schloetter sample (13.8% Ni) had the lowest corrosion rate, followed by the Canning sample (1.0% Co) and then Zincrolyte (0.3% Co).Neither the chromium content of the conversion films nor the chromium state was found to have an effect on corrosion performance of the coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deposition and properties of electroless nickel composite coatings containing graphite, PTFE and chromium were investigated. Solutions were developed for the codeposition of graphite and chromium with electroless nickel. Solutions for the deposition of graphite contained heavy metal ions for stability, with non-ionic and anionic surfactants to provide wetting and dispersion of the particles. Stability for the codeposition of chromium particles was achieved by oxidation of the chromium. Thin oxide layers of 200 nm thick prevented initiation of the electroless reaction onto the chromium. A mechanism for the formation of electroless composite coatings was considered based on the physical adsorption of particles and as a function of the adsorption of charged surfactants and metal cations from solution. The influence of variables such as particle concentration in solution, particle size, temperature, pH, and agitation on the volume percentage of particles codeposited was studied. The volume percentage of graphite codeposited was found to increase with concentration in solution and playing rate. An increase in particle size and agitation reduced the volume percentage codeposited. The hardness of nickel-graphite deposits was found to decrease with graphite content in the as-deposited and heat treated condition. The frictional and wear properties of electroless nickel-graphite were studied and compared to those of electroless nickel-PTFE. The self-lubricating nature of both coatings was found to be dependent on the ratio of coated area to uncoated area, the size and content of lubricating material in the deposit, and the load between contacting surfaces. The mechanism of self-lubrication was considered, concluding that graphite only produced an initial lubricating surface due to the orientation of flakes, unlike PTFE, which produced true self-lubrication throughout the coating life. Heat treatment of electroless nickel chromium deposits at 850oC for 8 and 16 hours produced nickel-iron-chromium alloy deposits with a phosphorus rich surface of high hardness. Coefficients of friction and wear rates were intially moderate for the phosphorus rich layer but increased for the nickel-iron-chromium region of the coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a bi-metal coated (platinum and gold or silver), localized surface plasmon resonance fiber sensor with an index sensitivity exceeding 11,900 nm/RIU, yielding an index resolution of 2 × 10-5 in the aqueous index regime. This is one of the highest index sensitivities achieved with an optical fiber sensor. The coatings consist of arrays of bi-metal nano-wires (typically 36 nm in radius and 20 μm in length), supported by a silicon dioxide thin film on a thin substrate of germanium, the nano-wires being perpendicular to the longitudinal axis of the D-shaped fiber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis was conducted with the aim of: 1) investigating the binding capabilities of calix[4]arene-functionalized microcantilevers towards specific metal ions and 2) developing a new16-microcantilever array sensing system for the rapid, and simultaneous detection of metal ions in fresh water. Part I of this thesis reports on the use of three new bimodal calix[4]arenes (methoxy, ethoxy and crown) as potential host/guest sensing layers for detecting selected ions in dilute aqueous solutions using single microcantilever experimental system. In this work it was shown that modifying the upper rim of the calix[4]arenes with a thioacetate end group allow calix[4]arenes to self-assemble on Au(111) forming complete highly ordered monolayers. It was also found that incubating the microcantilevers coated with 5 nm of Inconel and 40 nm of Au for 1 h in a 1.0 M solution of calix[4]arene produced the highest sensitivity. Methoxy-functionalized microcantilevers showed a definite preference for Ca²⁺ ions over other cationic guests and were able to detect trace concentration as low as 10⁻¹² M in aqueous solutions. Microcantilevers modified with ethoxy calix[4]arene displayed their highest sensitivity towards Sr²⁺ and to a lesser extent Ca²⁺ ions. Crown calix[4]arene-modified microcantilevers were however found to bind selectively towards Cs⁺ ions. In addition, the counter anion was also found to contribute to the deflection. For example methoxy calix[4]arene-modified microcantilever was found to be more sensitive to CaCl₂ over other water-soluble calcium salts such as Ca(NO₃)₂ , CaBr₂ and CaI₂. These findings suggest that the response of calix[4]arene-modified microcantilevers should be attributed to the target ionic species as a whole instead of only considering the specific cation and/or anion. Part II presents the development of a 16-microcantilever sensor setup. The implementation of this system involved the creation of data analysis software that incorporates data from the motorized actuator and a two-axis photosensitive detector to obtain the deflection signal originating from each individual microcantilever in the array. The system was shown to be capable of simultaneous measurements of multiple microcantilevers with different coatings. A functionalization unit was also developed that allows four microcantilevers in the array to be coated with an individual sensing layer one at the time. Because of the variability of the spring constants of different cantilevers within the array, results presented were quoted in units of surface stress unit in order to compare values between the microcantilevers in the array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.

The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.

ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.

Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.

Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.

Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this work is the development of a hardmetal components (WC-6%Co) recovery method by thermal deposition process. The thermal deposition technique used was HVOF (high velocity oxygen-fuel). The HVOF enables depositions of thick coatings (100-500 µm) with low porosity levels, high hardness and excellent adhesion. Before deposition, hardmetal samples with different geometries (plates and cylinders) were finished in order to have different roughness. The influence of these parameters in adhesion was studied. After this step, different re-sintering temperatures were used, in order to determine which one allows to obtain the maxima densification, elements distribution and metallurgical bonding. The re-sintering promotes the densification of the coating, with an increase of its hardness and metallurgical bonding formation. The inclusion of an intermetallic layer was tested along with different layer parameters. In liquid phase sintering (1383 and 1455 ºC) a complete densification of the coating occurred, while a bonding between the substrate and the coating only partially happened. The results of SEM/EDS show low levels of porosity and a complete and uniform distribution of the elements of the alloy. The cylindrical samples without intermetallic layer showed the lowest level of porosity and best metallurgical bonding. When the substrate surface was polished (Ra = 0.05 mm) lower levels of porosity and greater metallurgical bonding were found for both geometries. Taking into account the results obtained in this study, we can conclude that the implementation of this process is appropriate for cylindrical components with a polished surface. In these components the intermetallic layer is unnecessary and punctual defects like pores can be repaired with this process.