35 resultados para Melamine
Resumo:
To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experimentally: Modulus of elasticity measured statically, stiffness stabilization efficiency in different climates (30 and 87% of relative humidity), modulus of rupture, work maximum load, impact bending strength, compression, tensile and shear strength at indoor conditions (65% of relative humidity). In both types of active principle of modification, cell wall or lumen fill, no significant changes on the bending stiffness (modulus of elasticity) were found. In the remaining properties analysed significant changes in the modified wood-material took place compared to unmodified wood control: - Cell wall modification was the most effective method to achieve high stiffness stabilization efficiency (up to 60%) and also increased compression strength (up to 230%). However, modulus of rupture, tensile, shear and the impact bending strength were reduced by both resins, but in a varying extent, where the N-methylol melamine formaldehyde endured less reduction than 1,3-dimethylol-4,5-dihydroxyethyleneurea resin. In the latter, reduction up to 60% can take place. - In the lumen fill modification: tetra-alkoxysilane has no effect in the mechanical properties. Although, a slight increase in shear strength parallel to the grain was found. Wax specimens have shown a slight increase in bending strength, compression, tensile and shear strength as well as in the absorption energy capacity.
Resumo:
This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.
Resumo:
L'exposition aux poussières de bois est associé à un risque accru d'adénocarcinomes des fosses nasales et des sinus paranasaux (SNC, 'Sinonasal cancer') chez les travailleurs du bois. Les poussières de bois sont ainsi reconnues comme cancérogènes avérés pour l'homme par le Centre international de Recherche sur le Cancer (CIRC). Toutefois, l'agent causal spécifique et le mécanisme sous-jacent relatifs au cancer lié aux poussières de bois demeurent inconnus. Une possible explication est une co-exposition aux poussières de bois et aux Hydrocarbures Aromatiques Polycycliques (HAP), ces derniers étant potentiellement cancérogènes. Dans les faits, les travailleurs du bois sont non seulement exposés aux poussières de bois naturel, mais également à celles générées lors d'opérations effectuées à l'aide de machines (ponceuses, scies électriques, etc.) sur des finitions de bois (bois traités) ou sur des bois composites, tels que le mélaminé et les panneaux de fibres à densité moyenne (MDF, 'Medium Density Fiberboard'). Des HAP peuvent en effet être générés par la chaleur produite par l'utilisation de ces machines sur la surface du bois. Les principaux objectifs de cette thèse sont les suivants: (1) quantifier HAP qui sont présents dans les poussières générées lors de diverses opérations courantes effectuées sur différents bois (2) quantifier l'exposition individuelle aux poussières de bois et aux HAP chez les travailleurs, et (3) évaluer les effets génotoxiques (dommages au niveau de l'ADN et des chromosomes) due à l'exposition aux poussières de bois et aux HAP. Cette thèse est composée par une étude en laboratoire (objectif 1) et par une étude de terrain (objectifs 2 et 3). Pour l'étude en laboratoire, nous avons collecté des poussières de différents type de bois (sapin, MDF, hêtre, sipo, chêne, bois mélaminé) générées au cours de différentes opérations (comme le ponçage et le sciage), et ceci dans une chambre expérimentale et dans des conditions contrôlées. Ensuite, pour l'étude de terrain, nous avons suivi, dans le cadre de leur activité professionnelle, 31 travailleurs de sexe masculin (travailleurs du bois et ébenistes) exposés aux poussières de bois pendant deux jours de travail consécutifs. Nous avons également recruté, comme groupe de contrôle, 19 travailleurs non exposés. Pour effectuer une biosurveillance, nous avons collecté des échantillons de sang et des échantillons de cellules nasales et buccales pour chacun des participants. Ces derniers ont également rempli un questionnaire comprenant des données démographiques, ainsi que sur leur style de vie et sur leur exposition professionnelle. Pour les travailleurs du bois, un échantillonnage individuel de poussière a été effectué sur chaque sujet à l'aide d'une cassette fermée, puis nous avons évalué leur exposition à la poussière de bois et aux HAP, respectivement par mesure gravimétrique et par Chromatographie en phase gazeuse combinée à la spectrométrie de masse. L'évaluation des dommages induits à l'ADN et aux chromosomes (génotoxicité) a été, elle, effectuée à l'aide du test des micronoyaux (MN) sur les cellules nasales et buccales et à l'aide du test des comètes sur les échantillons de sang. Nos résultats montrent dans la poussière de la totalité des 6 types de bois étudiés la présence de HAP (dont certains sont cancérogènes). Des différences notoires dans les concentrations ont été néanmoins constatées en fonction du matériau étudié : les concentrations allant de 0,24 ppm pour la poussière de MDF à 7.95 ppm pour le mélaminé. Nos résultats montrent également que les travailleurs ont été exposés individuellement à de faibles concentrations de HAP (de 37,5 à 119,8 ng m-3) durant les opérations de travail du bois, alors que les concentrations de poussières inhalables étaient relativement élevés (moyenne géométrique de 2,8 mg m-3). En ce qui concerne la génotoxicité, les travailleurs exposés à la poussière de bois présentent une fréquence significativement plus élevée en MN dans les cellules nasales et buccales que les travailleurs du groupe témoin : un odds ratio de 3.1 a été obtenu pour les cellules nasales (IC 95% : de 1.8 à 5.1) et un odds ratio de 1,8 pour les cellules buccales (IC 95% : de 1.3 à 2.4). En outre, le test des comètes a montré que les travailleurs qui ont déclaré être exposés aux poussières de MDF et/ou de mélaminé avaient des dommages à l'ADN significativement plus élevés que les deux travailleurs exposés à la poussière de bois naturel (sapin, épicéa, hêtre, chêne) et que les travailleurs du groupe témoin (p <.01). Enfin, la fréquence des MN dans les cellules nasales et buccales augmentent avec les années d'exposition aux poussières de bois. Par contre, il n'y a pas de relation dose-réponse concernant la génotoxicité due à l'exposition journalière à la poussière et aux HAP. Cette étude montre qu'une exposition aux HAP eu bien lieu lors des opérations de travail du bois. Les travailleurs exposés aux poussières de bois, et donc aux HAP, courent un risque plus élevé (génotoxicité) par rapport au groupe témoin. Étant donné que certains des HAP détectés sont reconnus potentiellement cancérogènes, il est envisageable que les HAP générés au cours du travail sur les matériaux de bois sont un des agents responsables de la génotoxicité de la poussière de bois et du risque élevé de SNC observé chez les travailleurs du secteur. Etant donné la corrélation entre augmentation de la fréquence des MN, le test des micronoyaux dans les cellules nasales et buccales constitue sans conteste un futur outil pour la biosurveillance et pour la détection précoce du risque de SNC chez les travailleurs. - Exposures to wood dust have been associated with an elevated risk of adenocarcinomas of the Dasal cavity and the paranasal sinuses (sinonasal cancer or SNC) among wood workers. Wood dust is recognized as a human carcinogen by the International Agency for Research on Cancer. However, the specific cancer causative agent(s) and the mechanism(s) behind wood dust related carcinogenesis remains unknown. One possible explanation is a co-exposure to wood dust and polycyclic aromatic hydrocarbons (PAH), the latter being carcinogenic. In addition, wood workers are not only exposed to natural wood but also to wood finishes and composite woods such as wood melamine and medium density fiber (MDF) boards during the manipulation with power tools. The heat produced by the use of power tools can cause the generation of PAH from wood materials. The main objectives of the present thesis are to: (1) quantify possible PAH concentrations in wood dust generated during various common woodworking operations using different wood materials; (2) quantify personal wood dust concentrations and PAH exposures among wood workers; and (3) assess genotoxic effects (i.e., DNA and chromosomal damage) of wood dust and PAH exposure in wood workers. This thesis is composed by a laboratory study (objective 1) and a field study (objectives 2 and 3). In the laboratory study we collected wood dust from different wood materials (fir, MDF, beech, mahagany, oak, and wood melamine) generated during different wood operations (e.g., sanding and sawing) in an experimental chamber under controlled conditions. In the following field study, we monitored 31 male wood workers (furniture and construction workers) exposed to wood dust during their professional activity for two consecutive work shifts. Additionally, we recruited 19 non exposed workers as a control group. We collected from each participant blood samples, and nasal and buccal cell samples. They answered a questionnaire including demographic and life-style data and occupational exposure (current and past). Personal wood dust samples were collected using a closed-face cassette. We used gravimetrie analysis to determine the personal wood dust concentrations and capillary gas chromatography - mass spectrometry analysis to determine PAH concentrations. Genotoxicity was assessed with the micronucleus (MN) assay for nasal and buccal cells and with the comet assay for blood samples. Our results show that PAH (some of them carcinogenic) were present in dust from all six wood materials tested, yet at different concentrations depending on the material. The highest concentration was found in dust from wood melamine (7.95 ppm) and the lowest in MDF (0.24 ppm). Our results also show that workers were individually exposed to low concentrations of PAHs (37.5-119.8 ng m"3) during wood working operations, whereas the concentrations of inhalable dust were relatively high (geometric mean 2.8 mg m"3). Concerning the genotoxicity, wood workers had a significantly higher MN frequency in nasal and buccal cells than the workers in the control group (odds ratio for nasal cells 3.1 (95%CI 1.8-5.1) and buccal cells 1.8 (95%CI 1.3-2.4)). Furthermore, the comet assay showed that workers who reported to be exposed to dust from wooden boards (MDF and wood melamine) had significantly higher DNA damage than both the workers exposed to natural woods (fir, spruce, beech, oak) and the workers in the control group (p < 0.01). Finally, MN frequency in nasal and buccal cells increased with increasing years of exposure to wood dust. However, there was no genotoxic dose-response relationship with the per present day wood dust and PAH exposure. This study shows that PAH exposure occurred during wood working operations. Workers exposed to wood dust, and thus to PAH, had a higher risk for genotoxicity compared to the control group. Since some of the detected PAH are potentially carcinogenic, PAH generated from operations on wood materials may be one of the causative agents for the observed increased genotoxicity in wood workers. Since increased genotoxicity is manifested in an increased MN frequency, the MN assay in nasal and buccal cells may become a relevant biomonitoring tool in the future for early detection of SNC risk.
Resumo:
Tässä työssä on tutkittu ammoniakin ja hiilidioksidin erottamista adsorptio prosessilla ja suunniteltiin paineen muunteluun perustuvan adsorptioprosessin (PSA) käyttöä. Työn tarkoituksena oli laskea adsorptioon perustuvan prosessin kannattavuus melamiinitehtaan poistokaasujen erotuksessa. Tätä varten työssä suunniteltiin tehdasmitta-kaavainen prosessi ja arvioitiin sen kannattavuus. Työssä mitattiin adsorptiotasapainot, joiden perusteella sovitettiin sopiva kokeellinen adsorptioisotermi. Adsorptioisotermi lisättiin simulointiohjelmaan, jonka avulla suunniteltiin kaksi vaihtoehtoista pilot laitteistoa kaasujen erottamiseksi. Toisella pilot laitteistolla saadaan mitattua vain läpäisykäyrät, mutta paremmalla versiolla saadaan myös tietoa erotettujen komponenttien puhtaudesta. Suunnittelun tärkeimpiä lähtökohtia on molempien komponenttien mahdollisimman korkea puhtaus ja talteenottoaste. Täysimittakaavainen tehdas suunniteltiin simulointiohjelmiston avulla kahdelle eri kapasiteetille ja arvioitiin niiden kustannukset ja kannattavuus. Adsorptioprosessit osoittautuivat kannattaviksi kaasuseoksen erottamisessa kummassakin tapauksessa
Resumo:
Tämän tutkimuksen tarkoituksena oli määrittää melamiinipinnoituslinjalla käytettäville eri pinnoituskalvoille linjan käytön kannalta optimaaliset puristusparametrit. Tutkimuksessa vertailtiin erityisesti puristuslämpötilan ja -ajan vaikutusta pinnoitettujen levyjen pinnoitteiden kypsymiseen. Pinnoitteiden kypsyminen mitattiin pääasiassa kypsyystestien avulla. Tulosten pohjalta laadittiin 6 eri pinnoitusreseptiä, joihin pinnoitteet jaoteltiin. Yksi pinnoitusresepti pitää sisällään tiedot käytettävistä puristusparametreista, eli puristuspaineesta, -lämpötilasta ja -ajasta. Testien tuloksia analysoitaessa havaittiin eri pinnoitteiden käyttäytyvän eri tavoin. Osa pinnoitteista kesti korkeampia lämpötiloja, osa taas vaati pidemmän puristusajan sopivan kypsyysasteen saavuttamiseksi. Sopiviin puristusaikoihin havaittiin vaikuttavan erityisesti käytetyn hartsin reaktiivisuus ja kalvoissa käytetyn pigmenttiväriaineen tummuus.
Resumo:
The driving forces for current research of flame retardants are increased fire safety in combination with flame retardant formulations that fulfill the criteria of sustainable production and products. In recent years, important questions about the environmental safety of antimony, and in particular, brominated flame retardants have been raised. As a consequence of this, the current doctoral thesis work describes efforts to develop new halogen-free flame retardants that are based on various radical generators and phosphorous compounds. The investigation was first focused on compounds that are capable of generating alkyl radicals in order to study their role on flame retardancy of polypropylene. The family of azoalkanes was selected as the cleanest and most convenient source of free alkyl radicals. Therefore, a number of symmetrical and unsymmetrical azoalkanes of the general formula R-N=N-R’ were prepared. The experimental results show that in the series of different sized azocycloalkanes the flame retardant efficacy decreased in the following order: R = R´= cyclohexyl > cyclopentyl > cyclobutyl > cyclooctanyl > cyclododecanyl. However, in the series of aliphatic azoalkanes compounds, the efficacy decreased as followed: R = R´= n-alkyl > tert-butyl > tert-octyl. The most striking difference in flame retardant efficacy was observed in thick polypropylene plaques of 1 mm, e.g. azocyclohexane (AZO) had a much better flame retardant performance than did the commercial reference FR (Flamestab® NOR116) in thick PP sections. In addition, some of the prepared azoalkane flame retardants e.g. 4’4- bis(cyclohexylazocyclohexyl) methane (BISAZO) exhibited non-burning dripping behavior. Extrusion coating experiments of flame retarded low density polyethylene (LDPE) onto a standard machine finished Kraft paper were carried out in order to investigate the potential of azoalkanes in multilayer facings. The results show that azocyclohexane (AZO) and 4’4-bis (cyclohexylazocyclohexyl) methane (BISAZO) can significantly improve the flame retardant properties of low density polyethylene coated paper already at 0.5 wt.% loadings, provided that the maximum extrusion temperature of 260 oC is not exceeded and coating weight is kept low at 13 g/m2. In addition, various triazene-based flame retardants (RN1=N2-N3R’R’’) were prepared. For example, polypropylene samples containing a very low concentration of only 0.5 wt.% of bis- 4’4’-(3’3’-dimethyltriazene) diphenyl ether and other triazenes passed the DIN 4102-1 test with B2 classification. It is noteworthy that no burning dripping could be detected and the average burning times were very short with exceptionally low weight losses. Therefore, triazene compounds constitute a new and interesting family of radical generators for flame retarding of polymeric materials. The high flame retardant potential of triazenes can be attributed to their ability to generate various types of radicals during their thermal decomposition. According to thermogravimetric analysis/Fourier transform infrared spectroscopy/MS analysis, triazene units are homolytically cleaved into various aminyl, resonance-stabilized aryl radicals, and different CH fragments with simultaneous evolution of elemental nitrogen. Furthermore, the potential of thirteen aliphatic, aromatic, thiuram and heterocyclic substituted organic disulfide derivatives of the general formula R-S-S-R’ as a new group of halogen-free flame retardants for polypropylene films have been investigated. According to the DIN 4102- 1 standard ignitibility test, for the first time it has been demonstrated that many of the disulfides alone can effectively provide flame retardancy and self-extinguishing properties to polypropylene films at already very low concentrations of 0.5 wt.%. For the disulfide family, the highest FR activity was recorded for 5’5’-dithiobis (2-nitrobenzoic acid). Very low values for burning length (53 mm) and burning time (10 s) reflect significantly increased fire retardant performance of this disulfide compared to other compounds in this series as well as to Flamestab® NOR116. Finally, two new, phosphorus-based flame retardants were synthesized: P’P-diphenyl phosphinic hydrazide (PAH) and melamine phenyl phosphonate (MPhP). The DIN 4102-1 test and the more stringent UL94 vertical burning test (UL94 V) were used to assess the formulations ability to extinguish a flame once ignited. A very strong synergistic effect with azoalkanes was found, i.e. in combination with these radical generators even UL94 V0 rate could be obtained.
Resumo:
The main objective of this thesis is to study the impact of different mineral fillers and fire retardants on the reaction-to-fire properties of extruded/coextruded wood-plastic composites (WPCs). The impact of additives on the flammability properties of WPCs is studied by cone calorimetry. The studied properties are ignition time, peak heat release rate, total heat release, total smoke production, and mass loss rate. The effects of mineral fillers and fire retardants were found to vary with the type of additive, the type of additive combinations, the amount of additives, as well as the production method of the WPCs. The study shows that talc can be used to improve the properties of extruded WPCs. Especially ignition time, peak heat release rate and mass loss rate were found to be improved significantly by talc. The most significant improvement in the fire retardancy of coextruded WPCs was achieved in combinations of natural graphite and melamine. Ignition time, peak heat release rate and total smoke production were improved essentially. High increase in smoke production was found in samples where the amount of ammonium polyphosphate was 10% or higher. Coextrusion as a structural modification was found as a promising way to improve the flammability properties of composite materials in a cost-effective way.
Resumo:
The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive
Resumo:
According to ABIPA (2009), Brazil is currently among the major producers of reconstituted wood panels, with one of the main factors for this condition, its climate and its large land area, which allows the cultivation of forests, which provide raw materials for these industries. To establish that market as power, Brazil has invested about R$ 1.3 billion in the last 10 years, yet designed an investment of 0.8 billion dollars over the next three years (BNDES, 2008). With the new investments in this segment, we expect a growth of about 66% in the resin consumption of urea-formaldehyde (GPC, 2009) which should also result in major investments by the companies producing this polymer. Currently employees are mainly three types of resins in the production industry panels, as follows: Urea-Formaldehyde Resin (R-UF), melamine-formaldehyde resin (R-MF) and Phenol-Formaldehyde Resin (R-FF). Especially the cost factor, the urea-formaldehyde resin is the most used by companies producing reconstituted wood panels. The UF-R is a polymer obtained by condensation of urea and formaldehyde reactors (usually batch type), characterized by being a thermosetting polymer which makes it very efficient for bonding wood composites. The urea-formaldehyde polymer, to present a quite complex, it becomes very difficult to predict the exact chain resulting in the process of condensation of urea with formaldehyde, so that a greater knowledge of its characteristics and methods for their characterization can result in greater control in industrial processes and subsequent decrease cost and improve the quality of reconstituted wood panels produced in Brazil
Resumo:
Thermosetting resins are very important in the production of MDF panels. They act as an adhesive in the process of compacting and consolidating the fiberboard. Thermoset resins commonly used in this process are based resin urea formaldehyde (UF) and melamine formaldehyde (MF). The first has a higher demand due to its low cost and good performance in meeting the specifications and standards. The second has a high cost compared to MF resin, but adds greater value to the MDF panel, because it gives greater moisture resistance. The process of manufacture of MDF boards was briefly presented in this study to facilitate the understanding of the work. Samples of thermosetting resins (UF and MF) were subjected to physical-chemical seeking to relate these results to the technological performance presented by their respective samples of MDF boards. Two other samples of MDF panels were subjected to physical and mechanical tests. Results were analyzed and related to the award of their respective thermoset resin. Instruments like Dahmos Trend Manager ® and Grecon Dax 5000 and TG - DSC analysis were used in this study to assist in the analysis of the results. It was observed that the results of the analysis of thermosetting resins were within the specified. Such resins do not directly influence the technological tests provided by the MDF panels, but it has been found that the process variables such as humidity and fiber production rate interfere with the performance of the resin accelerating the reaction and therefore their influence on the physical-mechanical properties of the panels MDF. Samples of MDF panels with UF and MF met all the specifications required by the Brazilian standard with regard to the technological quality. The increased demand for UF resin market is justified by the service specifications...
Resumo:
For the past three years the New Jersey Department of Agriculture, in coop¬eration with the New Jersey Agricultural Experiment Station, has conducted field evaluations on the effects of reproductive suppressants on wild populations of red-winged blackbirds. These studies have been performed in conjunction with the North East 49 (a Federally sponsored regional project which presently has nine states in the North East and Ohio cooperating to develop means to combat bird damage to agricultural crops) regional project on control of bird depredations. Field evaluations in 1968 and 1969 centered around the effects of TEM (tri-ethylene melamine) on the reproductive rates of red-winged blackbirds. At the close of the 1969 season further field testing of the chemical was discontinued because of the material's apparent lack of effectiveness as a reproductive inhibitor. In 1970 the field evaluations were conducted to determine the effects of Orni-trol (20, 25-diazocholesterol dihydrochloride, supplied by G. D. Searle and Company, Chicago, Illinois) on the reproductive rates of red-winged blackbirds. A small colony of common grackles was also studied during this same investigation.
Resumo:
The common ground of this study is the development of novel synthetic strategies to extended one-, two- and three-dimensional aromate-rich systems for which a number of applications are envisaged. rnThe point of departure is the synthesis and characterization of highly symmetric macrocyclic PAHs (polycyclic aromatic hydrocarbons) for which various aspects of supramolecular chemistry will be investigated. The versatility of the Yamamoto macrocyclization will be demonstrated on the basis of a set of cyclic trimers that exhibit a rich supramolecular chemistry. 1,10-phenanthroline, triphenylene and ortho-terphenyl building blocks have been successfully assembled to the corresponding macrocycles following the newly developed synthetic route. Scanning-tunneling microscopy (STM) and two-dimensional wide-angle X-ray scattering (2D-WAXS) were used to study the two- and three-dimensional self-assembly, respectively.rnSecondly, the development of chemical approaches to highly shape-anisotropic graphene nanoribbons (GNRs) and related nanographene molecules shall be discussed. Aryl-aryl coupling was used for the bottom-up fabrication of dendronized monomers, polymers and model compounds. Subsequently, these structures were converted into the final graphene material using oxidative (Scholl-type) cyclodehydrogenation. The GNRs thus obtained are characterized by an unprecedented length and lateral extension. The relevance of structural tailoring in the field of well-defined graphene materials is discussed in detail as only the chemical approach provides full geometry control. rnLastly, novel pathways towards the synthesis of extended three-dimensional networks that are dominated by nitrogen-rich motifs will be presented. If porous, these materials hold a great potential in the fields of gas and energy storage as well as for applications in catalysis. Hence, poly(aminal) networks based on melamine as crosslinking unit were synthesized and characterized with respect to the applications mentioned above. As set of conjugated poly(azomethine) networks was investigated regarding their use as a novel class of organic semiconductors for photocatalytic water splitting. The network structures described in this chapter can also be subjected to a controlled pyrolysis yielding mesoporous, nitrogen-rich carbon materials that were evaluated as active component for supercapacitors.rn
Resumo:
Activated carbons were prepared by chemical activation of hydrochars, obtained by hydrothermal carbonisation (HTC) using low cost and abundant precursors such as rye straw and cellulose, with KOH. Hydrochars derived from rye straw were chemically activated using different KOH/precursor ratios, in order to assess the effect of this parameter on their electrochemical behaviour. In the case of cellulose, the influence of the hydrothermal carbonisation temperature was studied by fixing the activating agent/cellulose ratio. Furthermore, N-doped activated carbons were synthesised by KOH activation of hydrochars prepared by HTC from a mixture of glucose with melamine or glucosamine. In this way, N-doped activated carbons were prepared in order to evaluate the influence of nitrogen groups on their electrochemical behaviour in acidic medium. The results showed that parameters such as chemical activation or carbonisation temperature clearly affect the capacitance, since these parameters play a key role in the textural properties of activated carbons. Finally, symmetric capacitors based on activated carbon and N-doped activated carbon were tested at 1.3 V in a two-electrode cell configuration and the results revealed that N-groups improved the capacitance at high current density.