997 resultados para Medicina Regenerativa


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Cirurgia Veterinária - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUÇÃO: O enxerto de gordura nos últimos anos voltou a ter destaque como aliado dos cirurgiões plásticos no preenchimento de partes moles, no rejuvenescimento facial volumétrico, nos refinamentos de reconstruções mamárias e por ser rica fonte de células-tronco de comportamento mesenquimal (células-tronco adipoderivadas). Considerando que essas células têm importante papel na angiogênese e na diferenciação adipogênica, com impacto direto na sobrevivência dos enxertos de gordura, determinar parâmetros que otimizem a sua obtenção é imperativo. Nesse contexto, o objetivo deste trabalho é avaliar e comparar dois métodos de obtenção do tecido adiposo da região abdominal quanto ao número de células viáveis presentes na fração vásculo-estromal e analisar a expressão de marcadores de superfície. MÉTODO: Foram selecionadas 9 pacientes do sexo feminino submetidas a lipoaspiração. O tecido adiposo foi obtido da região abdominal infraumbilical. Da metade direita foram coletados 20 ml de gordura, empregando-se cânula acoplada a uma seringa, cujo êmbolo foi tracionado de 2 cc em 2 cc, gerando baixas pressões de aspiração (grupo manual). O mesmo processo foi repetido na metade esquerda, entretanto a cânula estava acoplada a um coletor intermediário estéril e esse a uma máquina de vácuo sob pressão negativa constante de 350 mmHg (grupo a vácuo). As amostras foram centrifugadas e a gordura da camada intermediária dos dois grupos foi submetida a contagem celular, estabelecimento de culturas e posterior imunofenotipagem. RESULTADOS: Este estudo demonstrou que, apesar de não haver diferença estatisticamente significativa, a obtenção da gordura da região abdominal empregando-se lipoaspirador com pressão negativa de 350 mmHg proporcionou maior número de células presentes na fração vásculo-estromal quando comparado à obtenção por meio de seringas de 10 ml, com baixas pressões de aspiração. CONCLUSÕES: O emprego de pressão negativa de 350 mmHg é seguro para a obtenção das células-tronco adipoderivadas e o rendimento celular entre os dois grupos não apresentou diferença estatisticamente significativa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fil: Glorio, Roberto. Universidad de Buenos Aires

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to characterize organ culture of human neuroretina and to establish survival and early degeneration patterns of neural and glial cells. Sixteen neuroretina explants were prepared from 2 postmortem eyes of 2 individuals. Four explants were used as fresh retina controls, and 12 were evaluated at 3, 6, and 9 days of culture. Neuroretina explants (5 × 5 mm) were cultured in Transwell® dishes with the photoreceptor layer facing the supporting membrane. Culture medium (Neurobasal A-based) was maintained in contact with the membrane beneath the explant. Cryostat and ultrathin sections were prepared for immunohistochemistry and electron microscopy. Neuroretinal modifications were evaluated after toluidine blue staining and after immunostaining for neuronal and glial cell markers. Ultrastructural changes were analyzed by electron microscopy. From 0 to 9 days in culture, there was progressive retinal degeneration, including early pyknosis of photoreceptor nuclei, cellular vacuolization in the ganglion cell layer, decrease of both plexiform layer thicknesses, disruption and truncation of photoreceptor outer segments (OS), and marked reduction in the number of nuclei at both nuclear layers where the cells were less densely packed. At 3 days there was swelling of cone OS with impairment of pedicles, loss of axons and dendrites of horizontal and rod bipolar cells that stained for calbindin (CB) and protein kinase C (PKC-α), respectively. After 9 days, horizontal cells were pyknotic and without terminal tips. There were similar degenerative processes in the outer plexiform layer for rod bipolar cells and loss of axon terminal lateral varicosities in the inner plexiform layer. Glial fibrillary acidic protein (GFAP) staining did not reveal a dramatic increase of gliosis in Müller cells. However, some Müller cells were CB immunoreactive at 6 days of culture. Over 9 days of culture, human neuroretina explants underwent morphological changes in photoreceptors, particularly the OS and axon terminals, and in postsynaptic horizontal and bipolar cells. These early changes, not previously described in cultured human samples, reproduce some celullar modifications after retinal damage. Thus, this model may be suitable to evaluate therapeutic agents during retinal degeneration processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The theoretical and experimental developments in the biomaterials area have been directly applied to different fields of Medicine (odontology, regenerative medicine and radiotherapy). These advances have focused both for diagnosing diseases such as for quantifying degrees of progression. From the perspective of these studies, biomaterials are being designed and manufactured for application in various areas of science, provided advances in diagnostic radiology, radiotherapy dosimetry and calibration of radiotherapy equipment. Develop a phantom from a biomaterial has become a great ally of medicine in the treat patients with oncological diseases, allowing better performance of the equipment in order to reduce damage to healthy tissue due to excessive exposure to radiation. This work used polymers: chitosan and gelatin, for making the polymeric structures and controlled for different types of production and processing, characterizing and evaluating the biopolymer by physical techniques (STL, SEM and DEI) and therefore analyze applicability as phantom mouse lung. It was possible to evaluate the morphology of biomaterials quantitatively by scanning electron microscopy associated with imaging technique. The relevance of this work focuses on developing a phantom from polymeric biomaterials that can act as phantom providing high image contrast when subjected to analysis. Thus, the choice of DEI technique is satisfactory since it is an imaging technique of X-ray high resolution. The images obtained by DEI have shown the details of the internal microstructure of the biomaterial produced which have ≈ 10 μm dimension. The phantoms had made density ranging from 0.08 a 0.13 g/cm3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde la organogénesis y hasta estadios adultos, las células madre mesenquimales participan activamente dando origen y manteniéndola homeostasis del organismo. En la cavidad oral han sido aisladas desde variadas estructuras del órgano dental tales como el ligamento periodontal, pulpa dental, tejido gingival, folículo dental y papila apical significando una prometedora fuente de células madre mesenquimales las que pueden ser caracterizadas de acuerdo a los criterios mínimos establecidos por "The International Society for Cellular Therapy" que son: a) La adherencia al plástico; b) La expresión de marcadores CD73, CD90, CD105 y la carencia de CD34, CD45, CD14, CD11, CD79, CD19 y HLA-DR (clase II); c) Capacidad multipotencial de diferenciación hacia linaje osteogénico, condrogénico y adipogénico. El objetivo de esta revisión consiste en realizar un levantamiento de la situación actual de este tema efectuando una revisión comprensiva de la literatura en los campos de; identificación a través demarcadores de superficie, aislamiento por medio de mecanismos de digestión enzimática o explante, almacenamiento atendiendo a la necesidad de suprimir el uso de suero fetal bovino como medio de cultivo en un esfuerzo por avanzar hacia aplicaciones terapéuticas, banca o criopreservación destacando nuevas experiencia en este campo como lo es la criopreservación de piezas dentales completas gracias a la tecnología láser Nd:YAG. Y, finalmente, las aplicaciones clínicas que promete este grupo de células a través de la medicina regenerativa y la ingeniería tisular tanto en el campo de la odontología como la medicina general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.