899 resultados para Malocclusion Class II - therapy
Resumo:
Objective: To evaluate the dentoskeletal changes of Class II malocclusion treatment with the Twin Force Bite Corrector (TFBC). Materials and Methods: The sample comprised 86 lateral cephalograms obtained from 43 subjects with Class II division 1 malocclusion; the subjects were divided into two groups. The experimental group comprised 23 patients with a mean initial age of 12.11 years who were treated with the TFBC for a mean period of 2.19 years. The control group included 40 lateral cephalograms from 20 Class II nontreated patients, with an initial mean age of 12.55 years and a mean observation period of 2.19 years. The lateral cephalograms were evaluated before and after orthodontic treatment in group 1 and in the beginning and end of the observation period in group 2. t-Tests were used to compare the initial and final cephalometric characteristics of the groups as well as the amount of change. Results: The experimental group presented greater maxillary growth restriction and mandibular retrusion than the control group, as well as greater maxillomandibular relationship improvement and greater labial tipping of the mandibular incisors. The results also showed a greater decrease in overbite and overjet in the experimental group, and there were no statistically significant differences in the craniofacial growth pattern between groups. Conclusions: The TFBC promotes restriction of anterior maxillary displacement without significant changes in mandibular length and position and improvement of maxillomandibular relationship without changes in facial growth and significant buccal tipping of mandibular incisors. Class II correction with the TFBC occurred primarily as a result of dentoalveolar changes.
Resumo:
OBJECTIVE: To verify the presence and degree of asymmetry of dental arches in Brazilian individuals with natural normal occlusion and Class II, Divisions 1 and 2 malocclusions. METHODS: The study evaluated the symmetry of the maxillary and mandibular dental arches of 180 pairs of dental casts, divided into: Group I = 60 pairs of natural normal occlusion individuals; Group II = 60 pairs of Class II, Division 1 malocclusion individuals; and Group III = 60 pairs of Class II, Division 2 malocclusion individuals. A device was used to measure dental midline deviation and the canine tip in the dental arches (in degrees). It was also verified the distance of the upper canines from the palatal suture, intercanine distance, and anteroposterior upper and lower first molar position. RESULTS: Dental arches of individuals from all groups presented asymmetry, regardless of the presence of malocclusion. Group I showed a lower asymmetry degree in relation to Groups II and III. The asymmetry in Groups II and III was similar. CONCLUSION: The dental arches of individuals with natural normal occlusion and with Class II, Division 1 and Division 2 malocclusions showed asymmetry. The asymmetry degree was higher in the mandibular dental arches than in the maxillary dental arches in all 3 evaluated groups.
Resumo:
OBJECTIVE: Define and compare numbers and types of occlusal contacts in maximum intercuspation. METHODS: The study consisted of clinical and photographic analysis of occlusal contacts in maximum intercuspation. Twenty-six Caucasian Brazilian subjects were selected before orthodontic treatment, 20 males and 6 females, with ages ranging between 12 and 18 years. The subjects were diagnosed and grouped as follows: 13 with Angle Class I malocclusion and 13 with Angle Class II Division 1 malocclusion. After analysis, the occlusal contacts were classified according to the established criteria as: tripodism, bipodism, monopodism (respectively, three, two or one contact point with the slope of the fossa); cuspid to a marginal ridge; cuspid to two marginal ridges; cuspid tip to opposite inclined plane; surface to surface; and edge to edge. RESULTS: The mean number of occlusal contacts per subject in Class I malocclusion was 43.38 and for Class II Division 1 malocclusion it was 44.38, this difference was not statistically significant (p>0.05). CONCLUSIONS: There is a variety of factors that influence the number of occlusal contacts between a Class I and a Class II, Division 1 malocclusion. There is no standardization of occlusal contact type according to the studied malocclusions. A proper selection of occlusal contact types such as cuspid to fossa or cuspid to marginal ridge and its location in the teeth should be individually defined according to the demands of each case. The existence of an adequate occlusal contact leads to a correct distribution of forces, promoting periodontal health.
Resumo:
The aim of this study was to assess the changes in inclination of the maxillary second (M2) and third (M3) molars after orthodontic treatment of Class II Division 1 malocclusion with extraction of maxillary first molars.
Resumo:
INTRODUCTION Our objective was to investigate potential associations between maxillary sinus floor extension and inclination of maxillary second premolars and second molars in patients with Class II Division 1 malocclusion whose orthodontic treatment included maxillary first molar extractions. METHODS The records of 37 patients (18 boys, 19 girls; mean age, 13.2 years; SD, 1.62 years) treated between 1998 and 2004 by 1 orthodontist with full Begg appliances were used in this study. Inclusion criteria were white patients with Class II Division 1 malocclusion, sagittal overjet of ≥4 mm, treatment plan including extraction of the maxillary first permanent molars, no missing teeth, and no agenesis. Maxillary posterior tooth inclination and lower maxillary sinus area in relation to the palatal plane were measured on lateral cephalograms at 3 time points: at the start and end of treatment, and on average 2.5 years posttreatment. Data were analyzed for the second premolar and second molar inclinations by using mixed linear models. RESULTS The analysis showed that the second molar inclination angle decreased by 7° after orthodontic treatment, compared with pretreatment values, and by 11.5° at the latest follow-up, compared with pretreatment. There was evidence that maxillary sinus volume was negatively correlated with second molar inclination angle; the greater the volume, the smaller the inclination angle. For premolars, inclination increased by 15.4° after orthodontic treatment compared with pretreatment, and by 8.1° at the latest follow-up compared with baseline. The volume of the maxillary sinus was not associated with premolar inclination. CONCLUSIONS We found evidence of an association between maxillary second molar inclination and surface area of the lower sinus in patients treated with maxillary first molar extractions. Clinicians who undertake such an extraction scheme in Class II patients should be aware of this potential association and consider appropriate biomechanics to control root uprighting.
Resumo:
Class II division 1 malocclusion occurs in 3.5 to 13 percent of 7 12 year-old children. It is the most common reason for orthodontic treatment in Finland. Correction is most commonly performed using headgear treatment. The aim of this study was to investigate the effects of cervical headgear treatment on dentition, facial skeletal and soft tissue growth, and upper airway structure, in children. 65 schoolchildren, 36 boys and 29 girls were studied. At the onset of treatment a mean age was 9.3 (range 6.6 12.4) years. All the children were consequently referred to an orthodontist because of Class II division 1 malocclusion. The included children had protrusive maxilla and an overjet of more than 2mm (3 to 11 mm). The children were treated with a Kloehn-type cervical headgear as the only appliance until Class I first molar relationships were achieved. The essential features of the headgear were cervical strong pulling forces, a long upward bent outer bow, and an expanded inner bow. Dental casts and lateral and posteroanterior cephalograms were taken before and after the treatment. The results were compared to a historical, cross-sectional Finnish cohort or to historical, age- and sex-matched normal Class I controls. The Class I first molar relationships were achieved in all the treated children. The mean treatment time was 1.7 (range 0.3-3.1) years. Phase 2 treatments were needed in 52% of the children, most often because of excess overjet or overbite. The treatment decreased maxillary protrusion by inhibiting alveolar forward growth, while the rest of the maxilla and mandible followed normal growth. The palate rotated anteriorly downward. The expansion of the inner bow of the headgear induced widening of the maxilla, nasal cavity, and the upper and lower dental arches. Class II malocclusion was associated with narrower oro- and hypopharyngeal space than in the Class I normal controls. The treatment increased the retropalatal airway space, while the rest of the airway remained unaffected. The facial profile improved esthetically, while the facial convexity decreased. Facial soft tissues masked the facial skeletal convexity, and the soft tissue changes were smaller than skeletal changes. In conclusion, the headgear treatment with the expanded inner bow may be used as an easy and simple method for Class II correction in growing children.
Resumo:
INTRODUCTION:
Class II malocclusion is often associated with retrognathic mandible. Some of these problems require surgical correction. The purposes of this study were to investigate treatment outcomes in patients with Class II malocclusions whose treatment included mandibular advancement surgery and to identify predictors of good outcomes.
METHODS:
Pretreatment and posttreatment cephalometric radiographs of 90 patients treated with mandibular advancement surgery by 57 consultant orthodontists in the United Kingdom before September 1998 were digitized, and cephalometric landmarks were identified. Paired samples t tests were used to compare the pretreatment and posttreatment cephalometric values for each patient. For each cephalometric variable, the proportion of patients falling within the ideal range was identified. Multiple logistic regression analysis was performed to identify predictors of achieving ideal range outcomes for the key skeletal (ANB and SNB angles), dental (overjet and overbite), and soft-tissue (Holdaway angle) measurements.
RESULTS:
An overjet within the ideal range of 1 to 4 mm was achieved in 72% of patients and was more likely with larger initial ANB angles. Horizontal correction of the incisor relationship was achieved by a combination of 75% skeletal movement and 25% dentoalveolar change. An ideal posttreatment ANB angle was achieved in 42% of patients and was more likely in females and those with larger pretreatment ANB angles. Ideal soft-tissue Holdaway angles (7 degrees to 14 degrees ) were achieved in 49% of patients and were more likely in females and those with smaller initial SNA angles. Mandibular incisor decompensation was incomplete in 28% of patients and was more likely in females and patients with greater pretreatment mandibular incisor proclination. Correction of increased overbite was generally successful, although anterior open bites were found in 16% of patients at the end of treatment. These patients were more likely to have had initial open bites.
CONCLUSIONS:
Mandibular surgery had a good success rate in normalizing the main dental and skeletal relationships. Less ideal soft-tissue profile outcomes were associated with larger pretreatment SNA-angle values, larger final mandibular incisor inclinations, and smaller final maxillary incisor inclinations. The use of mandibular surgery to correct anterior open bite was associated with poor outcomes.
Resumo:
The Nd:YAG laser efficacy associated with conventional treatment for bacterial reduction has been investigated throughout literature. The purpose of this study was to evaluate the bacterial reduction after Nd:YAG laser irradiation associated with scaling and root planning in class II furcation defects in patients with chronic periodontitis. Thirty-four furcation lesions were selected from 17 subjects. The control group received conventional treatment, and the experimental group received the same treatment followed by Nd:YAG laser irradiation (100 mJ/pulse; 15 Hz; 1.5 W, 60 s, 141.5 J/cm(2)). Both treatments resulted in improvements of most clinical parameters. A significant reduction of colony forming unit (CFU) of total bacteria number was observed in both groups. The highest reduction was noted in the experimental group immediately after the treatment. The number of dark pigmented bacteria and the percentage of patients with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans reduced immediately after the treatment and returned to values close to the initial ones 6 weeks after the baseline for both groups. The Nd:YAG laser associated with conventional treatment promoted significant bacterial reduction in class II furcation immediately after irradiation, although this reduction was not observed 6 weeks after the baseline.
Resumo:
The purpose of this retrospective investigation was to evaluate the dentoalveolar and skeletal cephalometric changes of the Bionator appliance on individuals with a Class II division 1 malocclusion. Lateral cephalograms of 44 patients were divided into two equal groups. The control group comprised 22 untreated Class II children (11 males, 11 females), with an initial mean age of 8 years 7 months who were followed without treatment for a period of 13 months. The Bionator group (111 males, 11 females) had an initial mean age of 10 years 8 months, and were treated for a mean period of 16 months. Lateral cephalometric headfilms were obtained of each patient and control at the beginning and end of treatment.The results showed that there were no changes in forward growth of the maxilla in the experimental group compared with the control group. However, the Bionator treatment produced a statistically significant increase in mandibular protrusion, and in total mandibular and body lengths. There were no statistically significant differences in craniofacial growth direction between the Bionator group and the control group, although the treated patients demonstrated a greater increase in posterior face height. The Bionator appliance produced labial tipping of the lower incisors and lingual inclination of the upper incisors, as well as a significant increase (P < 0.01) in mandibular posterior dentoalveolar height. The major effects of the Bionator appliance were dentoalveolar, with a smaller significant skeletal effect. The results indicate that the correction of a Class II division 1 malocclusion with the Bionator appliance is achieved not only by a combination of mandibular skeletal effects, but also by significant dentoalveolar changes.
Resumo:
This study aims to evaluate the effect of using anionic collagen membranes in guided tissue regeneration treatment of Class II furcation lesions in dogs. The defects were created in the buccal furcation of 16 mandibular premolars of four dogs. After 56 days without plaque control, the sites were scaled and divided into two groups according to the treatment applied: control sites, open flap debridement; and test sites, guided tissue regeneration treatment. The animals were killed after 3 months. Histological and histometrical analyses showed that the collagen membrane was better than open flap debridement in terms of newly formed cementum and epithelial migration prevention. It provided effective blockade of epithelial tissue and promoted regeneration of lost periodontal tissues, suggesting that the membrane warrants further study. (C) 1997 Elsevier B.V. Limited. All rights reserved.
Resumo:
Background: The purpose of this study was to histologically evaluate the healing of surgically created Class II furcation defects treated using an autogenous bone (AB) graft with or without a calcium sulfate (CS) barrier. Methods: The second, third, and fourth mandibular premolars (P2, P3, and P4) of six mongrel dogs were used in this study. Class II furcation defects (5 mm in height × 2 mm in depth) were surgically created and immediately treated. Teeth were randomly divided into three groups: group C (control), in which the defect was filled with blood clot; group AB, in which the defect was filled with AB graft; and group AB/CS, in which the defect was filled with AB graft and covered by a CS barrier. Elaps were repositioned to cover all defects. The animals were euthanized 90 days post-surgery. Mesio-distal serial sections were obtained and stained with either hematoxylin and eosin or Masson's trichrome. Histometric, using image-analysis software, and histologic analyses were performed. Linear and area measurements of periodontal healing were evaluated and calculated as a percentage of the original defect. Percentage data were transformed into arccosine for statistical analysis (analysis of variance; P<0.05). Results: Periodontal regeneration in the three groups was similar. Regeneration of bone and connective tissue in the furcation defects was incomplete in most of the specimens. Statistically significant differences were not found in any of the evaluated parameters among the groups. Conclusion: Periodontal healing was similar using surgical debridement alone, AB graft, or AB graft with a CS barrier in the treatment of Class II furcation defects.
Resumo:
Abstract: The aim of this study was to evaluate the occurence of compensation in mesiodistal axial inclinations of canines in skeletal malocclusions patients. The sample consisted of 25 Angle Class II, division 1 malocclusion (group 1) and 19 Angle Class III malocclusion patients (group 2). After measurement of dental angulations through a method that associates plaster model photography and AutoCad software, comparisons between the groups were performed by T-test for independent samples. Results showed that there was no statistically significant difference (p ≤ 0.05) between groups, when maxillary canine angulations were compared. Regarding the mandibular canines, there was a statistically significant difference in dental angulation, expressed by 3.2° for group 1 and 0.15° for group 2. An upright position tendency for mandibular canines was observed in the Angle Class III sample. This configures a pattern of compensatory coronary positioning, since the angulation of these teeth makes them occupy less space in the dental arch and consequently mandibular incisors can be in a more retracted position in the sagittal plane.
Resumo:
Aim: To evaluate the influence of construction bite in the dentoskeletal changes induced by Klammt Appliance. Methods: The sample consisted of 17 children, with Class II malocclusion and initial mean age of 8.5 years. The construction bite was obtained using an Exactobite on edge-toedge anteroposterior relationship with 3 mm interincisal clearance. The height of the acrylic was determined by initial overbite associated to interincisal clearance and measured with digital caliper. The amount of advancement was obtained and measured by initial overjet in the lateral radiography. Pearson's correlation, linear regression and ANOVA were used to determine the relationship between dentoskeletal and construction bite variables. Results: The increase in the height of the acrylic promotes a greater inhibition of the forward displacement of the nasal spine and reduction in the facial growth index. The increase in the mandibular advancement induces more downward displacement of nasal spine and pogonion; a counter-clockwise rotation of palatine plane; an increase in mandibular length, maxillary alveolar height and interincisal angle; a decrease in mandibular alveolar height, the intermaxillary discrepancy and overjet; and palatal tipping of upper incisors. Conclusions: The different dimensions of the construction bite influence the dentoskeletal changes induced by the appliance in Class II treatment.
Resumo:
Objective: To investigate the effects of the standard (Class II) Balters bionator in growing patients with Class II malocclusion with mandibular retrusion by using morphometrics (thin-plate spline [TPS] analysis). Materials and Methods: Thirty-one Class II patients (17 male and 14 female) were treated with the Balters bionator (bionator group). Mean age at the start of treatment (T0) was 10.3 years, while it was 13 years at the end of treatment (T1). Mean treatment time was 2 years and 2 months. The control group consisted of 22 subjects (14 male and 8 female) with untreated Class II malocclusion. Mean age at T0 was 10.2 years, while it was 12.2 years at T1. The observation period lasted 2 years on average. TPS analysis evaluated statistical (permutation tests) differences in the craniofacial shape and size between the bionator and control groups. Results: Through TPS analysis (deformation grids) the bionator group showed significant shape changes in the mandible that could be described as a mandibular forward and downward displacement. The control group showed no statistically significant differences in the correction of Class II malocclusion. Conclusions: Bionator appliance is able to induce significant mandibular shape changes that lead to the correction of Class II dentoskeletal disharmony. © 2013 by The EH Angle Education and Research Foundation, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)