910 resultados para Major Histocompatibility Complex
Resumo:
Tumor specific immunity is mediated by cytotoxic T lymphocytes (CTL) that recognize peptide antigen (Ag) in the context of major histocompatibility complex (MHC) class I molecules and by helper T (Th) lymphocytes that recognize peptide Ag in the context of MHC class II molecules. The purpose of this study is (1) to induce or augment the immunogenicity of nonimmunogenic or weakly immunogenic tumors by genetic modification of tumor cells, and (2) to use these genetically altered cells in cancer immunotherapy. To study this, I transfected a highly tumorigenic murine melanoma cell line (K1735) that did not express constitutively either MHC class I or II molecules with syngeneic cloned MHC class I and/or class II genes, and then determined the tumorigenicity of transfected cells in normal C3H mice. K1735 transfectants expressing either $\rm K\sp{k}$ or $\rm A\sp{k}$ molecules alone produced tumors in normal C3H mice, whereas most transfectants that expressed both molecules were rejected in normal C3H mice but produced tumors in nude mice. The rejection of K1735 transfectants expressing $\rm K\sp{k}$ and $\rm A\sp{k}$ Ag in normal C3H mice required both $\rm CD4\sp+$ and $\rm CD8\sp+$ T cells. Interestingly, the $\rm A\sp{k}$ requirement can be substituted by IL-2 because transfection of $\rm K\sp{k}$-positive/A$\sp{\rm k}$-negative K1735 cells with the IL-2 gene also resulted in abrogation of tumorigenicity in normal C3H mice but not in nude mice. In addition, 1735 $(\rm I\sp+II\sp+)$ transfected cells can function as antigen presenting cells (APC) since they could process and present native hen egg lysozyme (HEL) to HEL specific T cell hybridomas. Furthermore, the transplantation immunity induced by K1735 transfectants expressing both $\rm K\sp{k}$ and $\rm A\sp{k}$ molecules completely cross-protected mice against challenge with $\rm K\sp{k}$-positive transfectants but weakly protected them against challenge with parental K1735 cells or $\rm A\sp{k}$-positive transfectants. Finally, I demonstrated that MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells can function as anti-cancer vaccines since they can abrogate the growth of established tumors and metastasis.^ In summary, my results indicate that expression of either MHC class I or II molecule alone is insufficient to cause the rejection of K1735 melanoma in syngeneic hosts and that both molecules are necessary. In addition, my data suggest that the failure of $\rm K\sp{k}$-positive K1735 cells to induce a primary tumor-rejection response in normal C3H mice may be due to their inability to induce the helper arm of the anti-tumor immune response. Finally, the ability of MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells to prevent growth of established tumors or metastasis suggests that these cell lines can serve as potential vaccines for the immunotherapy of cancer. (Abstract shortened by UMI.) ^
Resumo:
We have analyzed the effect of antibodies (Abs) directed against major histocompatibility complex (MHC) class II Abs on the proliferation of Theileria parva-infected (Tpi) T cells. Anti-MHC class II Abs exert a direct effect on Tpi T cells causing an acute block in their proliferation. The inhibition does not involve apoptosis and is also entirely reversible. The rapid arrest of DNA synthesis caused by anti-MHC class II Abs is not due to interference with the state of activation of the T cells since the transcriptional activator NF-kappa B remains activated in arrested cells. In addition, interleukin 2 (IL-2), IL-2R, and c-myc gene expression are also unaffected. By analyzing the cell-cycle phase distribution of inhibited cells, it could be shown that cells in all phases of the cell cycle are inhibited. The signal transduction pathway that results in inhibition was shown to be independent of protein kinase C and extracellular Ca2+. Tyrosine kinase inhibitors, however, partly reduced the level of inhibition and, conversely, phosphatase inhibitors enhanced it. The possible relevance of this phenomenon in other systems is discussed.
Resumo:
A series of studies were undertaken to analyze and compare various aspects of murine class I glycoproteins. An initial area of investigation characterized the Qa-1 alloantigens using two-dimensional gel electrophoresis. Analysis of the products of the Qa-1('b), Qa-1('c) and Qa-1('d) alleles indicated that these were distinct molecules as determined by their lack of comigration upon comparative two-dimensional gel analysis. The importance of asparagine-linked glycosylation in the cell surface expression of class I molecules was also examined. These studies employed tunicamycin, an inhibitor of N-linked glycosylation. Tunicamycin treatment of activated T lymphocytes diminished the surface expression of Qa-1 to undetectable levels; the levels of other class I molecules exhibited little or no decrease. These results indicated that N-linked glycosylation has a differential importance in the cell surface expression of various class I molecules. The molecular weight diversity of class I molecules was also investigated. Molecular weight determination of both the fully glycosylated and unglycosylated forms of H-2 and Qa/Tla region encoded molecules established that there is a significant variation in the sizes of these forms of various class I molecules. The most significant difference ((TURN)9,000 daltons) exists between the unglycosylated forms of H-2K('b) and Qa-2, suggesting that the structural organization of these two molecules may be very different. A comparative two-dimensional gel analysis of various class I glycoproteins isolated from resting and activated T and B lymphocytes indicated that class I molecules expressed on activated T cells exhibited an isoelectrophoretic pattern that was distinct from the isoelectrophoretic pattern of class I molecules expessed on the other cell populations. This difference was attributed to a lower sialic acid content of the molecules expressed on activated T cells. Analysis of cell homogenates determined that activated T cells contained a higher level of endogenous neuraminidase activity than was detected in the other populations, suggesting that this may be the basis of the lower sialic acid content. The relationship of the Qa-4 and Qa-2 alloantigens was also examined. It was established that upon mitogen activation, the expression of Qa-4 was greatly decreased, whereas Qa-2 expression was not decreased. However, an anti-Qa-2 monoclonal antibody blocked the binding of an anti-Qa-4 monoclonal antibody to resting cells. These studies established that Qa-4 is a determinant restricted to resting cells, which is closely associated on the surface with the Qa-2 molecule. ^
Resumo:
Pulmonary fibrosis (PF) is the result of a variety of environmental and cancer treatment related insults and is characterized by excessive deposition of collagen. Gas exchange in the alveoli is impaired as the normal lung becomes dense and collapsed leading to a loss of lung volume. It is now accepted that lung injury and fibrosis are in part genetically regulated. ^ Bleomycin is a chemotherapeutic agent used for testicular cancer and lymphomas that induces significant pulmonary toxicity. We delivered bleomycin to mice subcutaneously via a miniosmotic pump in order to elicit lung injury (LI) and quantified the %LI morphometrically using video imaging software. We previously identified a quantitative trait loci, Blmpf-1(LOD=17.4), in the Major Histocompatibility Complex (MHC), but the exact genetic components involved have remained unknown. ^ In the current studies, Blmpf-1 was narrowed to an interval spanning 31.9-32.9Mb on Chromosome 17 using MHC Congenic mice. This region includes the MHC Class II and III genes, and is flanked by the TNF-alpha super locus and MHC Class I genes. Knockout mice of MHC Class I genes (B2mko), MHC Class II genes (Cl2ko), and TNF-alpha (TNF-/-) and its receptors (p55-/-, p75-/-, and p55/p75-/-) were treated with bleomycin in order to ascertain the role of these genes in the pathogenesis of lung injury. ^ Cl2ko mice had significantly better survival and %LI when compared to treated background BL/6 (B6, P<.05). In contrast, B2mko showed no differences in survival or %LI compared to B6. This suggests that the MHC Class II locus contains susceptibility genes for bleomycin-induced lung injury. ^ TNF-alpha, a Class III gene, was examined and it was found that TNF-/- and p55-/- mice had higher %LI and lower survival when compared to B6 (P<.05). In contrast, p75-/- mice had significantly reduced %LI when compared to TNF-/-, p55-/-, and B6 mice as well as higher survival (P<.01). These data contradict the current paradigm that TNF-alpha is a profibrotic mediator of lung injury and suggest a novel and distinct role for the p55 and p75 receptors in mediating lung injury. ^
Resumo:
Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B−/− or Cat D−/− antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B−/− splenocytes, as it did in Cat D−/− cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.
Resumo:
Protective/suppressive major histocompatibility complex (MHC) class II alleles have been identified in humans and mice where they exert a disease-protective and immunosuppressive effect. Various modes of action have been proposed, among them differential expression of MHC class II genes in different types of antigen-presenting cells impacting on the T helper type 1 (Th1)–Th2 balance. To test this possibility, the expression of H-2 molecules from the four haplotypes H-2b, H-2d, H-2k, and H-2q was determined on bone marrow-derived macrophages (BMDMs) and splenic B cells. The I-Ab and I-Ek molecules, both well characterized as protective/suppressive, are expressed at a high level on almost all CD11b+ BMDMs for 5–8 days, after which expression slowly declines. In contrast, I-Ad, I-Ak, and I-Aq expression is lower, peaks over a shorter period, and declines more rapidly. No differential expression could be detected on B cells. In addition, the differential MHC class II expression found on macrophages skews the cytokine response of T cells as shown by an in vitro restimulation assay with BMDMs as antigen-presenting cells. The results indicate that macrophages of the protective/suppressive haplotypes express MHC class II molecules at a high level and exert Th1 bias, whereas low-level expression favors a Th2 response. We suggest that the extent of expression of the class II gene gates the back signal from T cells and in this way controls the activity of macrophages. This effect mediated by polymorphic nonexon segments of MHC class II genes may play a role in determining disease susceptibility in humans and mice.
Resumo:
We obtained mice deficient for major histocompatibility complex (MHC) molecules encoded by the H-2K and H-2D genes. H-2 KbDb −/− mice express no detectable classical MHC class I-region associated (Ia) heavy chains, although β2-microglobulin and the nonclassical class Ib proteins examined are expressed normally. KbDb −/− mice have greatly reduced numbers of mature CD8+ T cells, indicating that selection of the vast majority (>90%) of CD8+ T cells cannot be compensated for by β2-microglobulin-associated molecules other than classical H-2K and D locus products. In accord with the greatly reduced number of CD8+ T cells, spleen cells from KbDb −/− mice do not generate cytotoxic responses in primary mixed-lymphocyte cultures against MHC-disparate (allogeneic) cells. However, in vivo priming of KbDb −/− mice with allogeneic cells resulted in strong CD8+ MHC class Ia-specific allogeneic responses. Thus, a minor population of functionally competent peripheral CD8+ T cells capable of strong cytotoxic activity arises in the complete absence of classical MHC class Ia molecules. KbDb −/− animals also have natural killer cells that retain their cytotoxic potential.
Resumo:
Distant relatives of major histocompatibility complex (MHC) class I molecules, human MICA and MICB, function as stress-induced antigens that are broadly recognized by intestinal epithelial γδ T cells. They may thus play a central role in the immune surveillance of damaged, infected, or otherwise stressed intestinal epithelial cells. However, the generality of this system in evolution and the mode of recognition of MICA and MICB are undefined. Analysis of cDNA sequences from various primate species defined translation products that are homologous to MICA and MICB. All of the MIC polypeptides have common characteristics, although they are extraordinarily diverse. The most notable alterations are several deletions and frequent amino acid substitutions in the putative α-helical regions of the α1α2 domains. However, the primate MIC molecules were expressed on the surfaces of normal and transfected cells. Moreover, despite their sharing of relatively few identical amino acids in potentially accessible regions of their α1α2 domains, they were recognized by diverse human intestinal epithelial γδ T cells that are restricted by MICA and MICB. Thus, MIC molecules represent a family of MHC proteins that are structurally diverse yet appear to be functionally conserved. The promiscuous mode of γδ T cell recognition of these antigens may be explained by their sharing of a single conserved interaction site.
Resumo:
Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.
Resumo:
Helper T cells are triggered by molecular complexes of antigenic peptides and class II proteins of the major histocompatibility complex . The formation of stable complexes between class II major histocompatibility complex proteins and antigenic peptides is often accompanied by the formation of a short-lived complex. In this report, we describe T cell recognition of two distinct complexes, one short-lived and the other long-lived, formed during the binding of an altered myelin basic protein peptide to I-Ak. One myelin basic protein-specific T cell clone is triggered by only the short-lived complex, and another is triggered by only the stable complex. Thus, a single peptide bound to a particular class II molecule can activate different T cells depending on the conditions of the binding reaction.
Resumo:
By combining two previously generated null mutations, Ii° and M°, we produced mice lacking the invariant chain and H-2M complexes, both required for normal cell-surface expression of major histocompatibility complex class II molecules loaded with the usual diverse array of peptides. As expected, the maturation and transport of class II molecules, their expression at the cell surface, and their capacity to present antigens were quite similar for cells from Ii°M° double-mutant mice and from animals carrying just the Ii° mutation. More surprising were certain features of the CD4+ T cell repertoire selected in Ii°M° mice: many fewer cells were selected than in Ii+M° animals, and these had been purged of self-reactive specificities, unlike their counterparts in Ii+M° animals. These findings suggest (i) that the peptides carried by class II molecules on stromal cells lacking H-2M complexes may almost all derive from invariant chain and (ii) that H-2M complexes edit the peptide array displayed on thymic stromal cells in the absence of invariant chain, showing that it can edit, in vivo, peptides other than CLIP.
Resumo:
Although cellular proteins degraded by proteasomes are the source of most antigenic peptides presented on major histocompatibility complex class I molecules, it is unknown whether the eight- to nine-residue peptides that fit in the binding groove of class I molecules are directly produced by proteasomes alone in vivo. If the eight-residue peptide SIINFEKL from chicken ovalbumin is extended by one or several residues at its C terminus and microinjected into cells or expressed from a minigene, it is processed and presented on major histocompatibility complex class I. However, processing and presentation are inhibited by proteasome inhibitors, such as lactacystin. In contrast, when SIINFEKL is extended by 2 to 25 residues at its N terminus, its presentation is not blocked by proteasome inhibitors. N-terminal processing also can occur when the extended peptide is cotranslationally inserted into the endoplasmic reticulum. Thus, two different proteolytic steps in the generation of an chicken ovalbumin-presented peptide can be distinguished. Cleavage by the proteasome defines the proper C terminus, whereas distinct peptidase(s) in the cytosol or endoplasmic reticulum may generate the appropriate N terminus from extended peptides.
Resumo:
A challenge for subunit vaccines whose goal is to elicit CD8+ cytotoxic T lymphocytes (CTLs) is to deliver the antigen to the cytosol of the living cell, where it can be processed for presentation by major histocompatibility complex (MHC) class I molecules. Several bacterial toxins have evolved to efficiently deliver catalytic protein moieties to the cytosol of eukaryotic cells. Anthrax lethal toxin consists of two distinct proteins that combine to form the active toxin. Protective antigen (PA) binds to cells and is instrumental in delivering lethal factor (LF) to the cell cytosol. To test whether the lethal factor protein could be exploited for delivery of exogenous proteins to the MHC class I processing pathway, we constructed a genetic fusion between the amino-terminal 254 aa of LF and the gp120 portion of the HIV-1 envelope protein. Cells treated with this fusion protein (LF254-gp120) in the presence of PA effectively processed gp120 and presented an epitope recognized by HIV-1 gp120 V3-specific CTL. In contrast, when cells were treated with the LF254-gp120 fusion protein and a mutant PA protein defective for translocation, the cells were not able to present the epitope and were not lysed by the specific CTL. The entry into the cytosol and dependence on the classical cytosolic MHC class I pathway were confirmed by showing that antigen presentation by PA + LF254-gp120 was blocked by the proteasome inhibitor lactacystin. These data demonstrate the ability of the LF amino-terminal fragment to deliver antigens to the MHC class I pathway and provide the basis for the development of novel T cell vaccines.
Resumo:
2C is a typical alloreactive cytotoxic T lymphocyte clone that recognizes two different ligands. These ligands are adducts of the allo-major histocompatibility complex (MHC) molecule H-2Ld and an endogenous octapeptide, and of the self-MHC molecule H-2Kb and another peptide. MHC-binding and T-cell assays with synthetic peptides in combination with molecular modeling studies were employed to analyze the structural basis for this crossreactivity. The molecular surfaces of the two complexes differ greatly in densities and distributions of positive and negative charges. However, modifications of the peptides that increase similarity decrease the capacities of the resulting MHC peptide complexes to induce T-cell responses. Moreover, the roles of the peptides in ligand recognition are different for self- and allo-MHC-restricted T-cell responses. The self-MHC-restricted T-cell responses were finely tuned to recognition of the peptide. The allo-MHC-restricted responses, on the other hand, largely ignore modifications of the peptide. The results strongly suggest that adaptation of the T-cell receptor to the different ligand structures, rather than molecular mimicry by the ligands, is the basis for the crossreactivity of 2C. This conclusion has important implications for T-cell immunology and for the understanding of immunological disorders.