1000 resultados para Magnetic oxides


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transport and magnetotransport properties of the metallic and ferromagnetic SrRuO3 (SRO) and the metallic and paramagnetic LaNiO3 (LNO) epitaxial thin films have been investigated in fields up to 55 T at temperatures down to 1.8 K . At low temperatures both samples display a well-defined resistivity minimum. We argue that this behavior is due to the increasing relevance of quantum corrections to the conductivity (QCC) as temperature is lowered; this effect being particularly relevant in these oxides due to their short mean free path. However, it is not straightforward to discriminate between contributions of weak localization and renormalization of electron-electron interactions to the QCC through temperature dependence alone. We have taken advantage of the distinct effect of a magnetic field on both mechanisms to demonstrate that in ferromagnetic SRO the weak-localization contribution is suppressed by the large internal field leaving only renormalized electron-electron interactions, whereas in the nonmagnetic LNO thin films the weak-localization term is relevant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis aims to exploit properties of thin films for applications such as spintronics, UV detection and gas sensing. Nanoscale thin films devices have myriad advantages and compatibility with Si-based integrated circuits processes. Two distinct classes of material systems are investigated, namely ferromagnetic thin films and semiconductor oxides. To aid the designing of devices, the surface properties of the thin films were investigated by using electron and photon characterization techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), and energy-dispersive X-ray spectroscopy (EDS). These are complemented by nanometer resolved local proximal probes such as atomic force microscopy (AFM), magnetic force microscopy (MFM), electric force microscopy (EFM), and scanning tunneling microscopy to elucidate the interplay between stoichiometry, morphology, chemical states, crystallization, magnetism, optical transparency, and electronic properties. Specifically, I studied the effect of annealing on the surface stoichiometry of the CoFeB/Cu system by in-situ AES and discovered that magnetic nanoparticles with controllable areal density can be produced. This is a good alternative for producing nanoparticles using a maskless process. Additionally, I studied the behavior of magnetic domain walls of the low coercivity alloy CoFeB patterned nanowires. MFM measurement with the in-plane magnetic field showed that, compared to their permalloy counterparts, CoFeB nanowires require a much smaller magnetization switching field , making them promising for low-power-consumption domain wall motion based devices. With oxides, I studied CuO nanoparticles on SnO2 based UV photodetectors (PDs), and discovered that they promote the responsivity by facilitating charge transfer with the formed nanoheterojunctions. I also demonstrated UV PDs with spectrally tunable photoresponse with the bandgap engineered ZnMgO. The bandgap of the alloyed ZnMgO thin films was tailored by varying the Mg contents and AES was demonstrated as a surface scientific approach to assess the alloying of ZnMgO. With gas sensors, I discovered the rf-sputtered anatase-TiO2 thin films for a selective and sensitive NO2 detection at room temperature, under UV illumination. The implementation of UV enhances the responsivity, response and recovery rate of the TiO2 sensor towards NO2 significantly. Evident from the high resolution XPS and AFM studies, the surface contamination and morphology of the thin films degrade the gas sensing response. I also demonstrated that surface additive metal nanoparticles on thin films can improve the response and the selectivity of oxide based sensors. I employed nanometer-scale scanning probe microscopy to study a novel gas senor scheme consisting of gallium nitride (GaN) nanowires with functionalizing oxides layer. The results suggested that AFM together with EFM is capable of discriminating low-conductive materials at the nanoscale, providing a nondestructive method to quantitatively relate sensing response to the surface morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-two-dimensional oxides of the La,+,Sr,+,Mn04 system, possessing the KZNiF4 structure, show no evidence for ferromagnetic ordering in contrast to the corresponding three-dimensional La,+.Sr,MnO~ perovskites. Instead, there is an increasing tendency toward antiferromagnetic ordering with mcreasmg x m La,+,Sr,,, MnOp. Furthermore, these oxides are relatively high-resistivity materials over the entire compositional range. Substitution of Ba for Sr in La&r,.5Mn04 decreases the ferromagnetic interaction. Increasing the number of perovskite layers in SrO (La,-,Sr,MnO& causes an increase in electrical conductivity as well as ferromagnetic interaction. The oxide becomes a highly conducting ferromagnet when n 2 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the structure, magnetic and dielectric properties of the double perovskite oxides, R2NiMnO6 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y). We could refine powder X-ray diffraction patterns of all the phases on the basis of monoclinic (P2(1)/n) double perovskite structure where Ni and Mn atoms are ordered at 2c and 2d sites, respectively. All the phases are ferromagnetic insulators exhibiting relatively low dielectric loss and dielectric constants in the range 15-25. The ferromagnetic ordering temperature of the R2NiMnO6 series seems to correlate better with the radius of R3+ atoms than with the average Ni-O-Mn angle (phi) in the double perovskite structure. These results are consistent with all samples having Mn4+ and Ni2+ With minimal antisite disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic susceptibilities of several members of the series of oxides of the general formula LaNi1-xMxO3 (M = Cr, Fe, or Co) are reported. The oxides show evidence for interesting ferrimagnetic (Cr and Co) and antiferromagnetic (Fe) interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New A2+Mo4+O3 oxides for A = Mn, Co and Zn crystallizing in a defect spinel structure have been prepared by hydrogen-reduction of the corresponding AMoO4 oxides. X-ray powder diffraction intensity analysis of the zinc compound indicates that the cation distribution is (Zn)t[Zn1/3Mo4/3□1/3]oO4. The defect spinels are metastable decomposing to a mixture of A2Mo3O8 and AO at high temperatures. Electrical and magnetic properties of the spinel phases are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geometric constraints present in A2BO4 compounds with the tetragonal-T structure of K2NiF4 impose a strong pressure on the B---OII---B bonds and a stretching of the A---OI---A bonds in the basal planes if the tolerance factor is t congruent with RAO/√2 RBO < 1, where RAO and RBO are the sums of the A---O and B---O ionic radii. The tetragonal-T phase of La2NiO4 becomes monoclinic for Pr2NiO4, orthorhombic for La2CuO4, and tetragonal-T′ for Pr2CuO4. The atomic displacements in these distorted phases are discussed and rationalized in terms of the chemistry of the various compounds. The strong pressure on the B---OII---B bonds produces itinerant σ*x2−y2 bands and a relative stabilization of localized dz2 orbitals. Magnetic susceptibility and transport data reveal an intersection of the Fermi energy with the d2z2 levels for half the copper ions in La2CuO4; this intersection is responsible for an intrinsic localized moment associated with a configuration fluctuation; below 200 K the localized moment smoothly vanishes with decreasing temperature as the d2z2 level becomes filled. In La2NiO4, the localized moments for half-filled dz2 orbitals induce strong correlations among the σ*x2−y2 electrons above Td reverse similar, equals 200 K; at lower temperatures the σ*x2−y2 electrons appear to contribute nothing to the magnetic susceptibility, which obeys a Curie-Weiss law giving a μeff corresponding to S = 1/2, but shows no magnetic order to lowest temperatures. These surprising results are verified by comparison with the mixed systems La2Ni1−xCuxO4 and La2−2xSr2xNi1−xTixO4. The onset of a charge-density wave below 200 K is proposed for both La2CuO4 and La2NiO4, but the atomic displacements would be short-range cooperative in mixed systems. The semiconductor-metallic transitions observed in several systems are found in many cases to obey the relation Ea reverse similar, equals kTmin, where varrho = varrho0exp(−Ea/kT) and Tmin is the temperature of minimum resistivity varrho. This relation is interpreted in terms of a diffusive charge-carrier mobility with Ea reverse similar, equals ΔHm reverse similar, equals kT at T = Tmin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

THE COMPLEXES of pyridine-l-oxide and 2- and 4-substituted pyridine-l-oxides have been investigated previously[l]. The complexes of 3-substituted pyfidine-l-oxides, however, have received little attention. The rare-earth complexes of pyridine-Ioxide[l, 2], 4-methylpyridine- l-oxide [1] and 2,6- dimethylpyfidine-l-oxide[3,4] have been reported earlier. The present paper deals with the isolation and characterisation of 3-methylpyridine-l-oxide (3-Picoline-N-oxide, 3-PicNO) complexes with rare-earth perchlorates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic, magnetic, or structural inhomogeneities ranging in size from nanoscopic to mesoscopic scales seem endemic and are possibly generic to colossal magnetoresistance manganites and other transition metal oxides. They are hence of great current interest and understanding them is of fundamental importance. We show here that an extension, to include long-range Coulomb interactions, of a quantum two-fluid l-b model proposed recently for manganites [Phys. Rev. Lett. 92, 157203 (2004)] leads to an excellent description of such inhomogeneities. In the l-b model two very different kinds of electronic states, one localized and polaronic (l) and the other extended or broad band (b) coexist. For model parameters appropriate to manganites and even within a simple dynamical mean-field theory (DMFT) framework, it describes many of the unusual phenomena seen in manganites, including colossal magnetoresistance (CMR), qualitatively and quantitatively. However, in the absence of long-ranged Coulomb interaction, a system described by such a model would actually phase separate, into macroscopic regions of l and b electrons, respectively. As we show in this paper, in the presence of Coulomb interactions, the macroscopic phase separation gets suppressed and instead nanometer scale regions of polarons interspersed with band electron puddles appear, constituting a kind of quantum Coulomb glass. We characterize the size scales and distribution of the inhomogeneity using computer simulations. For realistic values of the long-range Coulomb interaction parameter V-0, our results for the thresholds for occupancy of the b states are in agreement with, and hence support, the earlier approach mentioned above based on a configuration averaged DMFT treatment which neglects V-0; but the present work has features that cannot be addressed in the DMFT framework. Our work points to an interplay of strong correlations, long-range Coulomb interaction, and dopant ion disorder, all inevitably present in transition metal oxides as the origin of nanoscale inhomogeneities rather than disorder frustrated phase competition as is generally believed. As regards manganites, it argues against explanations for CMR based on disorder frustrated phase separation and for an intrinsic origin of CMR. Based on this, we argue that the observed micrometer (meso) scale inhomogeneities owe their existence to extrinsic causes, e.g., strain due to cracks and defects. We suggest possible experiments to validate our speculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report formation of new noncentrosymmetric oxides of the formula, R3Mn1.5CuV0.5O9 for R = Y, Ho, Er, Tm, Yb and Lu, possessing the hexagonal RMnO3 (space group P6(3)cm) structure. These oxides could be regarded as the x = 0.5 members of a general series R3Mn3-3xCu2xVxO9. Investigation of the Lu-Mn-Cu-V-O system reveals the existence of isostructural solid solution series, Lu3Mn3-3xCu2xVxO9 for 0 < x <= 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserve the noncentrosymmetric RMnO3 structure. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many transition metal oxide materials of high chemical purity are not necessarily monophasic. Thus, single crystals of chemically pure rare earth manganites and cobaltates of the general formula Ln1-xAxMO3 (Ln=rare earth metal, A=alkaline earth metal, M=Mn, Co) exhibit the phenomenon of electronic phase separation wherein phases of different electronic and magnetic properties coexist. Such phase separation, the length scale of which can vary anywhere between a few nanometers to microns, gives distinct signatures in X-ray and neutron diffraction patterns, electrical and magnetic properties, as well as in NMR and other spectroscopies. While the probe one employs to investigate electronic phase separation depends on the length scale, it is noteworthy that direct imaging of the inhomogeneities has been accomplished. Some understanding of this phenomenon has been possible on the basis of some of the theoretical models, but we are far from unraveling the varied aspects of this new phenomenon. Herein, we present the highlights of experimental techniques and theoretical approaches, and comment on the future outlook for this fascinating phenomenon

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the structure and magnetic properties of the perovskite oxides of the formula La2Fe1-xMn2xCr1-xO6 (0 < x < 1.0). For 0 < x <= 0.5, the members adopt the orthorhombic (Pbnm) structure, where the transition metal atoms are disordered at the 4b sites and the MO6 (M = Fe, Mn, Cr) octahedra become increasingly distorted with increasing x. For 0.65 <= x < 1.0, the members adopt the rhombohedral (R-3c) structure that is similar to LaMnO3+delta (delta >= 0.1) where the MO6 octahedra are undistorted. While the magnetic properties of the latter series are largely similar to the parent LaMnO3+delta arising from the double-exchange (DE) between mixed valent Mn-III/Mn-IV, the magnetic properties of the orthorhombic members show a distinct (albeit weak) ferromagnetism (T-C similar to 200 K) that seems to arise from a Mn-III-mediated superexchange (SE) between Fe-III/Cr-III in the disordered perovskite structure containing Fe-III, Mn-III and Cr-III.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydrothermal reaction of a mixture of ZnCl2, V2O5, ethylenediamine and water gave rise to a layered poly oxovanadate material. clusters. These clusters, with all the vanadium ions in the +4 state, are connected together through Zn(NH2(CH2)(2)NH2)(2) linkers forming a two-dimensional structure. The layers are also separated by distorted trigonal bipyramidal [Zn-2(NH2(CH2)(2)NH2)(5)] complexes. The Structure, thus, presents a dual role for the Zn-ethylenediamine complex. The magnetic susceptibility studies indicate that the interactions between the V centres in I are predominantly antiferromagnetic in nature and the compound shows highly frustrated behaviour. The magnetic properties are compared to the theoretical calculations based oil the Heisenberg model, in addition to correlating to the structure. Crystal data for the complexes are presented.