976 resultados para MYCN-AMPLIFICATION
Resumo:
Background. Human small cell lung cancer (SCLC) accounting for approximately 15-20% of all lung cancers, is an aggressive tumor with high propensity for early regional and distant metastases. Although the initial tumor rate response to chemotherapy is very high, SCLC relapses after approximately 4 months in ED and 12 months in LD. Basal cell carcinoma (BCC) is the most prevalent cancer in the western world, and its incidence is increasing worldwide. This type of cancer rarely metastasizes and the death rate is extraordinary low. Surgery is curative for most of the patients, but for those that develop locally advanced or metastatic BCC there is currently no effective treatment. Both types of cancer have been deeply investigated and genetic alterations, MYCN amplification (MA) among the most interesting, have been found. These could become targets of new pharmacological therapies. Procedures. We created and characterized novel BLI xenograft orthotopic mouse models of SCLC to evaluate the tumor onset and progression and the efficacy of new pharmacological strategies. We compared an in vitro model with a transgenic mouse model of BCC, to investigate and delineate the canonical HH signalling pathway and its connections with other molecular pathways. Results and conclusions. The orthotopic models showed latency and progression patterns similar to human disease. Chemotherapy treatments improved survival rates and validated the in vivo model. The presence of MA and overexpression were confirmed in each model and we tested the efficacy of a new MYCN inhibitor in vitro. Preliminar data of BCC models highlighted Hedgehog pathway role and underlined the importance of both in vitro and in vivo strategies to achieve a better understanding of the pathology and to evaluate the applicability of new therapeutic compounds
Resumo:
Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLX(L). Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.Oncogene advance online publication, 1 October 2012; doi:10.1038/onc.2012.416.
Resumo:
Olfactory neuroblastoma (ONB) is a malignant tumor of the nasal mucosa whose histogenesis is unclear. A relationship to neuroblastoma (NB), a pediatric tumor of the sympathetic nervous system, is based on morphologic similarities and the expression of similar neural antigens. However, the clinical presentation of ONB differs from that of NB, and MYCN amplification characteristic of NB is not observed. We have therefore examined the relationship of this malignancy to other classes of neural tumors. In previous studies, two ONB cell lines demonstrated cytogenetic features and patterns of protooncogene expression suggestive of a relationship to the Ewing sarcoma family of childhood peripheral primitive neuroectodermal tumors (pPNETs). The pPNETs show t(11;22)(q24;q12) or t(21;22)(q22;q12) chromosomal translocations fusing the EWS gene from 22q12 with either the FL11 gene on 11q24 or the ERG gene on 21q22. We therefore analyzed ONBs for the presence of pPNET-associated gene fusions. Both cell lines showed rearrangement of the EWS gene, and fluorescence in situ hybridization (FISH) of each case demonstrated fusion of EWS and FL11 genomic sequences. Moreover, both lines expressed EWS/FL11 fusion transcripts with in-frame junctions between exon 7 of EWS and exon 6 of FL11 as described for pPNETs. We identified similar gene fusions in four of six primary ONB cases. None of the cases expressed tyrosine hydroxylase, a catecholamine biosynthetic enzyme widely expressed in NB. Our studies indicate that ONB is not a NB but is a member of the pPNET family.
Resumo:
MYCN amplification is a genetic hallmark of the childhood tumour neuroblastoma. MYCN-MAX dimers activate the expression of genes promoting cell proliferation. Moreover, MYCN seems to transcriptionally repress cell differentiation even in absence of MAX. We adopted the Drosophila eye as model to investigate the effect of high MYC to MAX expression ratio on cells. We found that dMyc overexpression in eye cell precursors inhibits cell differentiation and induces the ectopic expression of Antennapedia (the wing Hox gene). The further increase of MYC/MAX ratio results in an eye-to-wing homeotic transformation. Notably, dMyc overexpression phenotype is suppressed by low levels of transcriptional co-repressors and MYCN associates to the promoter of Deformed (the eye Hox gene) in proximity to repressive sites. Hence, we envisage that, in presence of high MYC/MAX ratio, the “free MYC” might inhibit Deformed expression, leading in turn to the ectopic expression of Antennapedia. This suggests that MYCN might reinforce its oncogenic role by affecting the physiological homeotic program. Furthermore, poor neuroblastoma outcome associates with a high level of the MRP1 protein, encoded by the ABCC1 gene and known to promote drug efflux in cancer cells. Intriguingly, this correlation persists regardless of chemotherapy and ABCC1 overexpression enhances neuroblastoma cell motility. We found that Drosophila dMRP contributes to the adhesion between the dorsal and ventral epithelia of the wing by inhibiting the function of integrin receptors, well known regulators of cell adhesion and migration. Besides, integrins play a crucial role during synaptogenesis and ABCC1 locus is included in a copy number variable region of the human genome (16p13.11) involved in neuropsychiatric diseases. Interestingly, we found that the altered dMRP/MRP1 level affects nervous system development in Drosophila embryos. These preliminary findings point out novel ABCC1 functions possibly defining ABCC1 contribution to neuroblastoma and to the pathogenicity of 16p13.11 deletion/duplication
Resumo:
Neuroblastoma (NB) is the most common type of tumor in infants and the third most common cancer in children. Current clinical practices employ a variety of strategies for NB treatment, ranging from standard chemotherapy to immunotherapy. Due to a lack of knowledge about the molecular mechanisms underlying the disease's onset, aggressive phenotype, and therapeutic resistance, these approaches are ineffective in the majority of instances. MYCN amplification is one of the most well-known genetic alterations associated with high risk in NB. The following work is divided into three sections and aims to provide new insights into the biology of NB and hypothetical new treatment strategies. First, we identified RUNX1T1 as a key gene involved in MYCN-driven NB onset in a transgenic mouse model. Our results suggested that that RUNX1T1 may recruit the Co-REST complex on target genes that regulate the differentiation of NB cells and that the interaction with RCOR3 is essential. Second, we provided insights into the role of MYCN in dysregulating the CDK/RB/E2F pathway controlling the G1/S transition of the cell cycle. We found that RB is dispensable in regulating MYCN amplified NB's cell cycle, providing the rationale for using cyclin/CDK complexes inhibitors in NBs carrying MYCN amplification and relatively high levels of RB1 expression. Third, we generated an M13 bacteriophage platform to target GD2-expressing cells in NB. Here, we generated a recombinant M13 phage capable of binding GD2-expressing cells selectively (M13GD2). Our results showed that M13GD2 chemically conjugated with the photosensitizer ECB04 preserves the retargeting capability, inducing cell death even at picomolar concentrations upon light irradiation. These results provided proof of concept for M13 phage employment in targeted photodynamic therapy for NB, an exciting strategy to overcome resistance to classical immunotherapy.
Resumo:
• We developed the first microsatellites for Passiflora setacea and characterized new sets of markers for P. edulis and P. cincinnata, enabling further genetic diversity studies to support the conservation and breeding of passion fruit species. • We developed 69 microsatellite markers and, in conjunction with assessments of cross-amplification using primers available from the literature, present 43 new polymorphic microsatellite loci for three species of Passiflora. The mean number of alleles per locus was 3.1, and the mean values of the expected and observed levels of heterozygosity were 0.406 and 0.322, respectively. • These microsatellite markers will be valuable tools for investigating the genetic diversity and population structure of wild and commercial species of passion fruit (Passiflora spp.) and may be useful for developing conservation and improvement strategies by contributing to the understanding of the mating system and hybridization within the genus.
Resumo:
Aeschynomene falcata is an important forage species; however, because of low seed production, it is underutilized as forage species. Aeschynomene is a polyphyletic genus with a challenging taxonomic position. Two subgenera have been proposed, and it is suggested that Aeschynomene can be split in 2 genera. Thus, new markers, such as microsatellite sequences, are desirable for improving breeding programs for A. falcata. Based on transferability and in situ localization, these microsatellite sequences can be applied as chromosome markers in the genus Aeschynomene and closely related genera. Here, we report the first microsatellite library developed for this genus; 11 microsatellites were characterized, with observed and expected heterozygosities ranging from 0.0000 to 0.7143 and from 0.1287 to 0.8360, respectively. Polymorphic information content varied from 0.1167 to 0.7786. The departure from Hardy-Weinberg equilibrium may have resulted from frequent autogamy, which is characteristic of A. falcata. Of the 11 microsatellites, 9 loci were cross-amplified in A. brevipes and A. paniculata and 7 in Dalbergia nigra and Machaerium vestitum. Five of these 7 cross-amplified microsatellites were applied as probes during the in situ hybridization assay and 2 showed clear signals on A. falcata chromosomes, ensuring their viability as chromosome markers.
Resumo:
Premise of the study: Dioscorea alata L. is one of the most widely distributed species of the genus in the humid and semihumid tropics and is associated with traditional agriculture. Only a few microsatellite markers have been developed so far for this and other Dioscorea species. Methods and Results: We isolated 14 codominant polymorphic microsatellite markers using a microsatellite-enriched genomic library technique. Ten microsatellite loci were selected, and 80 D. alata accessions from different regions in Brazil were evaluated with nine polymorphic loci. The polymorphism information content (PIC) varied from 0.39 to 0.78 and the power discrimination (PD) ranged from 0.15 to 0.91. Six of the markers showed transferability for the species D. bulbifera, D. cayenensis-D. rotundata, and D. trifida. Conclusions: The SSR markers obtained are an important tool for further studies aiming to characterize the genetic diversity in D. alata and other Dioscorea spp. accessions.
Resumo:
Premise of the study: Microsatellite primers were developed for Aulonemia aristulata, an endangered species of economic interest, to further describe its genetic variability and population structure. We also tested cross-amplification in 18 other bamboo species. Methods and Results: Using an enrichment genomic library, 13 microsatellite loci were isolated and characterized in A. aristulata. Seven of these loci were polymorphic. Twelve markers were cross-amplified in at least ten of the tested bamboo species. Conclusions: These markers will be useful for studies on the genetic diversity and structure of A. aristulata, which are important for future conservation, management and breeding programs of this species.
Resumo:
Mitochondrial DNA markers have been widely used to address population and evolutionary questions in the honey bee Apis mellifera. Most of the polymorphic markers are restricted to few mitochondrial regions. Here we describe a set of 24 oligonucleotides that allow PCR amplification of the entire mitochondrial genome of the honey bee A. mellifera in 12 amplicons. These fragments have important applications for the study of mitochondrial genes in different subspecies of A. mellifera and as heterospecific probes to characterize mitochondrial genomes in other bee species.
Resumo:
We analyze the dynamical behavior of a quantum system under the actions of two counteracting baths: the inevitable energy draining reservoir and, in opposition, exciting the system, an engineered Glauber's amplifier. We follow the system dynamics towards equilibrium to map its distinctive behavior arising from the interplay of attenuation and amplification. Such a mapping, with the corresponding parameter regimes, is achieved by calculating the evolution of both the excitation and the Glauber-Sudarshan P function. Techniques to compute the decoherence and the fidelity of quantum states under the action of both counteracting baths, based on the Wigner function rather than the density matrix, are also presented. They enable us to analyze the similarity of the evolved state vector of the system with respect to the original one, for all regimes of parameters. Applications of this attenuation-amplification interplay are discussed.
Resumo:
The effect of lateralized practice on manual preference was investigated in right-handed children. Probing tasks required reaching and grasping a pencil at distinct eccentricities in the right and left hemifields (simple), and its transportation and insertion into a small hole (complex). During practice, the children experienced manipulative tasks different from that used for probing, using the left hand only. Results showed that before practice the children used almost exclusively the right hand in the right hemifield and at the midline position. Following lateralized practice frequency of use of the left hand increased in most lateral positions. A more evident effect of lateralized practice on shift of manual preference was detected in the complex task. Implications for lateralization of behavior in a developmental timescale are discussed on the basis of the proposition of amplification and diffusion of manual preference from lateralized practice. (C) 2010 Wiley Periodicals, Inc. Dev Psychobiol 52: 723-730, 2010.
Resumo:
The purpose of the present study was to examine the benefits of providing audible speech to listeners with sensorineural hearing loss when the speech is presented in a background noise. Previous studies have shown that when listeners have a severe hearing loss in the higher frequencies, providing audible speech (in a quiet background) to these higher frequencies usually results in no improvement in speech recognition. In the present experiments, speech was presented in a background of multitalker babble to listeners with various severities of hearing loss. The signal was low-pass filtered at numerous cutoff frequencies and speech recognition was measured as additional high-frequency speech information was provided to the hearing-impaired listeners. It was found in all cases, regardless of hearing loss or frequency range, that providing audible speech resulted in an increase in recognition score. The change in recognition as the cutoff frequency was increased, along with the amount of audible speech information in each condition (articulation index), was used to calculate the "efficiency" of providing audible speech. Efficiencies were positive for all degrees of hearing loss. However, the gains in recognition were small, and the maximum score obtained by an listener was low, due to the noise background. An analysis of error patterns showed that due to the limited speech audibility in a noise background, even severely impaired listeners used additional speech audibility in the high frequencies to improve their perception of the "easier" features of speech including voicing
Resumo:
We describe a strategy for the selection and amplification of foreign gene expression in Chinese hamster ovary (CHO) cells employing a metallothionein gene-containing expression vector. This report describes an amplification procedure that results in an enrichment of clones exhibiting high levels of recombinant protein production and reduces the labour required for screening recombinant cell lines.