987 resultados para MOBILITY GAP
Resumo:
We report the synthesis of a novel class of low band gap copolymers based on anacenaphtho[1,2-b]quinoxaline core and oligothiophene derivatives acting as the acceptor and the donor moieties, respectively. The optical properties of the copolymers were characterized by ultraviolet-visible spectroscopy while the electrochemical properties were determined by cyclic voltammetry. The band gap of these polymers was found to be in the range 1.8-2.0 eV as calculated from the optical absorption band edge. X-ray diffraction measurements show weak pi-pi stacking interactions between the polymer chains. The hole mobility of the copolymers was evaluated using field-effect transistor measurements yielding values in the range 10(-5)-10(-3) cm(2)/Vs.
Resumo:
Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, epsilon(r)) in the range of 2-4. As a consequence, Coulombically bound electron-hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance epsilon(r) of well-known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of epsilon(r) together with poly(p-phenylene vinylene) and diketo-pyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of epsilon(r) with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl-C-61-butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.
Resumo:
A new D-A structured conjugated polymer (PBDO-T-TDP) based on electron-rich benzo 1,2-b:4,5-b'] difuran (BDO) containing conjugated alkylthiophene side chains with an electron-deficient diketopyrrolopyrrole (DPP) derivative is designed and synthesized. The polymer shows a narrow band gap with broad UV-Visible absorption spectra, which is in contrast to that of the P3HT:PCBM binary blend. Furthermore, its energy levels can meet the energetic requirement of the cascaded energy levels of P3HT and PCBM. Therefore, PBDO-T-TDP is used as a sensitizer in P3HT: PCBM based BHJ solar cells and its effect on their photovoltaic properties was investigated by blending them together at various weight ratios. It is observed that the resulting ternary blend system exhibited a significant improvement in the device performance (similar to 3.10%) as compared with their binary ones (similar to 2.15%). Such an enhancement in the ternary blend system is ascribed to their balanced hole and electron mobility along with uniform distribution of PBDO-T-TDP in the blend system, as revealed by organic field effect transistors and AFM studies.
Resumo:
A series of donor-acceptor low-bandgap conjugated polymers, i.e., PTnBT (n = 2-6), composed of alternating oligothiophene (OTh) and 2,1,3-benzothiadiazole (BT) units were synthesized by Stille cross-coupling polymerization. The number of thiophene rings in OTh units, that is n, was tuned from 2 to 6. All these polymers display two absorption bands in both solutions and films with absorption maxima depending on n. From solution to film, absorption spectra of the polymers exhibit a noticeable red shift. Both high- and low-energy absorption bands or P'F5BT and PT6BT films locate in the visible region, which are at 468 and 662 nm for PT5BT and 494 and 657 nm for PT6BT.
Resumo:
Income inequality undermines societies: The more inequality, the more health problems, social tensions, and the lower social mobility, trust, life expectancy. Given people's tendency to legitimate existing social arrangements, the stereotype content model (SCM) argues that ambivalence-perceiving many groups as either warm or competent, but not both-may help maintain socio-economic disparities. The association between stereotype ambivalence and income inequality in 37 cross-national samples from Europe, the Americas, Oceania, Asia, and Africa investigates how groups' overall warmth-competence, status-competence, and competition-warmth correlations vary across societies, and whether these variations associate with income inequality (Gini index). More unequal societies report more ambivalent stereotypes, whereas more equal ones dislike competitive groups and do not necessarily respect them as competent. Unequal societies may need ambivalence for system stability: Income inequality compensates groups with partially positive social images. © 2012 The British Psychological Society.
Resumo:
Background and Purpose: To quantify respiratory motion of the vocal cords during normal respiration using 4D-CT. The final goal is to develop a technique for single vocal cord irradiation (SVCI) in early glottic carcinoma. Sparing the non-involved cord and surrounding structures has the potential to preserve voice quality and allow re-irradiation of recurrent and second primary tumors. Material and methods: Four-dimensional CTs of 1 mm slice thickness from 10 early glottic carcinoma patients were acquired. The lateral dimensions of the air gap separating the vocal cords were measured anteriorly, at mid-level and posteriorly at each phase of the 4D-CTs. The corresponding anterior-posterior gaps were similarly measured. Cranio-caudal vocal cords movements during breathing were derived from the shifts of the arythenoids. Results: The population-averaged mean gap size ± the corresponding standard deviation due to breathing (SDB) for the lateral gaps was 5.8 ± 0.7 mm anteriorly, 8.7 ± 0.9 mm at mid-level, and 11.0 ± 1.3 mm posteriorly. Anterior-posterior gap values were 21.7 ± 0.7 mm, while cranio-caudal shift SDB was 0.8 mm. Conclusion: Vocal cords breathing motions were found to be small relative to their separation. Hence, breathing motion does not seem to be a limiting factor for SVCI. © 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The electron and hole mobility of nickel-bis(dithiolene) (NiDT) are determined in a metal– insulator–semiconductor (MIS)structure using admittance spectroscopy. The relaxation times found in the admittance spectra are attributed to the diffusion time of carriers to reach the insulator interface and via Einstein’s relation this yields the mobility values. In this way, an electron mobility of 1:9 104 cm2=Vs and a hole mobility of 3:9 106 cm2=Vs were found. It is argued that the low mobility is caused by an amphoteric mid-gap trap level. The activation energy for electrons and holes from these traps is found to be 0.46 eV and 0.40 eV, respectively.
Resumo:
Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed. © 2012 Materials Research Society.
Resumo:
The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. © 2013 IOP Publishing Ltd.
Resumo:
The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.
Resumo:
The purpose of our study was to assess physical and emotional factors in heart transplant patients. A prospective design was used to compare patients' physical symptoms, emotional complaints, and restrictions at admission to the waiting list, immediately after, and 1 and 5 years after heart transplantation. Thirty-three patients were included (30 male, 3 female) in the study. Their mean age at admission was 48 +/- 10.2 years. Of these, 23 suffered from cardiomyopathy, 8 from coronary heart disease, and 2 from valvular insufficiency. At admission, the patients suffered from symptoms of cardiac insufficiency, and were restricted in sports, gardening, hobbies, sexual life, job, food-intake, and mobility. More than three-fourths rated their physical and emotional status as moderate to poor. Emotionally, they suffered from irritability, restlessness, depression, psychic lability, lowered drive, lack of social contact, low self-esteem, and anxiety. At the end of rehabilitation (4-8 weeks after the operation), all physical and emotional complaints, as well as restrictions had significantly decreased (p < 0.0001 to p < 0.001), except for trembling, numbness of hands/feet, and food-intake. One year postoperatively, patients reported even fewer physical complaints (p < 0.01). Three-fourths rated their physical and emotional status good or excellent. Five years postoperatively--in contrast to physical status, restrictions, and physical complaints--the emotional complaints had increased significantly (p < 0.0001). Patients reported excellent physical performance up to 5 years postoperatively. On the other hand, the study revealed that their emotional well-being had significantly deteriorated from 1 to 5 years postoperatively. Attention should, therefore, not only be paid to the good physical health of the survivors, but also to the worsening of their emotional status.
Resumo:
One of the core objectives of urban planning practice is to provide spatial equity in terms of opportunities and use of public space and facilities. Accessibility is the element that serves this purpose as a concept linking the reciprocal relationship between transport and land use, thus shaping individual potential mobility to reach the desired destinations. Accessibility concepts are increasingly acknowledged as fundamental to understand the functioning of cities and urban regions. Indeed, by introducing them in planning practice, better solutions can be achieved in terms of spatial equity. The COST Action TU1002 "Accessibility instruments for planning practice" was specifically designed to address the gap between scientific research in measuring and modelling accessibility, and the current use of indicators of accessibility in urban planning practice. This paper shows the full process of introducing an easily understandable measure of accessibility to planning practitioners in Madrid, which is one of the case studies of the above-mentioned COST action. Changes in accessibility after the opening of a new metro line using contour measures were analyzed and then presented to a selection of urban planners and practitioners in Madrid as part of a workshop to evaluate the usefulness of this tool for planning practice. Isochrone maps were confirmed as an effective tool, as their utility can be supplemented by other indicators, and being GIS-based, it can be easily computed (when compared with transport models) and integrated with other datasets.
Resumo:
In this paper, we use a model of hydrogenated amorphous silicon generated from molecular dynamics with density functional theory calculations to examine how the atomic geometry and the optical and mobility gaps are influenced by mild hydrogen oversaturation. The optical and mobility gaps show a volcano curve as the hydrogen content varies from undersaturation to mild oversaturation, with largest gaps obtained at the saturation hydrogen concentration. At the same time, mid-gap states associated with dangling bonds and strained Si-Si bonds disappear at saturation but reappear at mild oversaturation, which is consistent with the evolution of optical gap. The distribution of Si-Si bond distances provides the key to the change in electronic properties. In the undersaturation regime, the new electronic states in the gap arise from the presence of dangling bonds and strained Si-Si bonds, which are longer than the equilibrium Si-Si distance. Increasing hydrogen concentration up to saturation reduces the strained bonds and removes dangling bonds. In the case of mild oversaturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structure shows that the extra hydrogen atoms form a bridge between neighbouring silicon atoms, thus increasing the Si-Si distance and increasing disorder in the sample.
Resumo:
Room temperature electroreflectance (ER) spectroscopy has been used to study the fundamental properties of AlxInyGa${}_{1-x-y}$N/AlN/GaN heterostructures under different applied bias. The (0001)-oriented heterostructures were grown by metal-organic vapor phase epitaxy on sapphire. The band gap energy of the AlxInyGa${}_{1-x-y}{\rm{N}}$ layers has been determined from analysis of the ER spectra using Aspnes' model. The obtained values are in good agreement with a nonlinear band gap interpolation equation proposed earlier. Bias-dependent ER allows one to determine the sheet carrier density of the two-dimensional electron gas and the barrier field strength.