231 resultados para MICROGLIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuroprotective effect of neuropeptide Y (NPY) receptor activation was investigated in organotypic mouse hippocampal slice cultures exposed to the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Exposure of 2-week-old slice cultures, derived from 7-day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2) receptor agonist [NPY(13-36), 300 nm]. This effect was sensitive to the presence of the selective Y(2) receptor antagonist (BIIE0246, 1 microm), but was not affected by addition of TrkB-Fc or by a neutralizing antibody against brain-derived neurotrophic factor (BDNF). Moreover, addition of a Y(1) receptor antagonist (BIBP3226, 1 microm) or a NPY-neutralizing antibody helped to disclose a neuroprotective role of endogenous NPY in CA1 region. Cultures exposed to 8 microm AMPA for 24 h, displayed, as measured by an enzyme-linked immunosorbent assay, a significant increase in BDNF. In such cultures there was an up-regulation of neuronal TrkB immunoreactivity, as well as the presence of BDNF-immunoreactive microglial cells at sites of injury. Thus, an increase of AMPA-receptor mediated neurodegeneration, in the mouse hippocampus, was prevented by neuroprotective pathways activated by NPY receptors (Y(1) and Y(2)), which can be affected by BDNF released by microglia and neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegeneration is a complex process involving different cell types andneurotransmitters. A common characteristic of neurodegenerative disorders such asAlzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis, Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS) is the occurrence of a neuroinflammatoryreaction in which cellular processes involving glial cells (mainly microglia and astrocytes) and T cells are activated in response to neuronal death. This inflammatory reaction has recently received attention as an unexpected potential target for the treatment of these diseases.Microglial cells have a mesenchymal origin, invade the central nervous system (CNS)prenatally (Chan et al., 2007b) and are the resident macrophages in the CNS (Ransohoff &Perry, 2009). They comprise approximately 10-20% of adult glia and serve as the CNS innateimmune system. In neurodegenerative diseases, microglia is activated by misfoldedproteins. In the case of AD, amyloid- (A ) peptides accumulate extracellularly and activate the microglia locally. In the case of PD, ALS and HD, the misfolded proteins accumulate intracellularly but are still associated with activation of the microglia (Perry et al., 2010). Reactive microglia in the substantia nigra and striatum of PD brains have been described, and increased levels of proinflammatory cytokines and inducible nitric oxide synthase havebeen detected in these brain regions, providing evidence of a local inflammatory reaction (Hirsch & Hunot, 2009). The injection of lipopolysaccharide (a potent microglia activator) into the substantia nigra produces microglial activation and the death of dopaminergic cells. These findings support the hypothesis that microglial activation and neuroinflammationcontribute to PD pathogenesis (Herrera et al., 2000)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroinflammation is the local reaction of the brain to infection, trauma, toxic molecules or protein aggregates. The brain resident macrophages, microglia, are able to trigger an appropriate response involving secretion of cytokines and chemokines, resulting in the activation of astrocytes and recruitment of peripheral immune cells. IL-1β plays an important role in this response; yet its production and mode of action in the brain are not fully understood and its precise implication in neurodegenerative diseases needs further characterization. Our results indicate that the capacity to form a functional NLRP3 inflammasome and secretion of IL-1β is limited to the microglial compartment in the mouse brain. We were not able to observe IL-1β secretion from astrocytes, nor do they express all NLRP3 inflammasome components. Microglia were able to produce IL-1β in response to different classical inflammasome activators, such as ATP, Nigericin or Alum. Similarly, microglia secreted IL-18 and IL-1α, two other inflammasome-linked pro-inflammatory factors. Cell stimulation with α-synuclein, a neurodegenerative disease-related peptide, did not result in the release of active IL-1β by microglia, despite a weak pro-inflammatory effect. Amyloid-β peptides were able to activate the NLRP3 inflammasome in microglia and IL-1β secretion occurred in a P2X7 receptor-independent manner. Thus microglia-dependent inflammasome activation can play an important role in the brain and especially in neuroinflammatory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semipalmated sandpiper Calidris pusilla and the spotted sandpiper Actitis macularia are long- and short-distance migrants, respectively. C. pusilla breeds in the sub-arctic and mid-arctic tundra of Canada and Alaska and winters on the north and east coasts of South America. A. macularia breeds in a broad distribution across most of North America from the treeline to the southern United States. It winters in the southern United States, and Central and South America. The autumn migration route of C. pusilla includes a non-stop flight over the Atlantic Ocean, whereas autumn route of A. macularia is largely over land. Because of this difference in their migratory paths and the visuo-spatial recognition tasks involved, we hypothesized that hippocampal volume and neuronal and glial numbers would differ between these two species. A. macularia did not differ from C. pusilla in the total number of hippocampal neurons, but the species had a larger hippocampal formation and more hippocampal microglia. It remains to be investigated whether these differences indicate interspecies differences or neural specializations associated with different strategies of orientation and navigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence that spinal glial cells play an important role in chronic pain states. However, so far no data on the role of microglia in muscle pain are available. The aim of the present study was to investigate the involvement of spinal microglial cells in chronic muscle pain. In a rat model of chronic muscle inflammation (injection of complete Freunds adjuvant into the gastrocnemius-soleus muscle) alterations of microglia were visualized with quantitative OX-42 immunohistochemistry in the dorsal horn of the segments L4 and L5 12 days after induction of inflammation. In behavioural experiments the influence of chronic intrathecally applied minocycline - a specific microglia inhibitor - or an antibody against tumour necrosis factor-alpha (TNF-alpha: a cytokine released from microglia) on pain-related behaviour was investigated after 1, 3, 6, and 12 days. The immunhistochemical data show that in the deep laminae of the spinal dorsal horn microglial cells reacted with morphological changes to the muscle inflammation. Following inflammation, the mean boundary length surrounding the OX-42 immunostained area was significantly shorter. This indicates that microglial cells were activated by the myositis and withdrew their processes. Chronic intrathecal administration of minocycline or anti TNF-alpha with an osmotic mini-pump largely normalised the inflammation-induced changes in spontaneous exploratory behaviour and attenuated the hypersensitivity to mechanical stimulation. Both the immunohistochemical and behavioural data show that spinal microglial cells are involved in nociceptive processes in the cause of a chronic muscle inflammation. (C) 2008 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acetic acid and phenyl-p-benzoquinone are easy and fast screening models to access the activity of novel candidates as analgesic drugs and their mechanisms. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. The knowledge of the mechanisms involved in the chosen model is a crucial step forward demonstrating the mechanisms that the candidate drug would inhibit because the mechanisms triggered in that model will be addressed. Herein, it was investigated the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, PI3K (phosphatidylinositol 3-kinase) and microglia in the writhing response induced by acetic acid and phenyl-p-benzoquinone, and flinch induced by formalin in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing response over 20 min. The nociceptive response in these models were significantly and in a dose-dependent manner reduced by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI3K (wortmannin) inhibitors. Furthermore, the co-treatment with MAP kinase and PI3K inhibitors, at doses that were ineffective as single treatment, significantly inhibited acetic acid- and phenyl-p-benzoquinone-induced nociception. The treatment with microglia inhibitors minocycline and fluorocitrate also diminished the nociceptive response. Similar results were obtained in the formalin test. Concluding. MAP kinases and PI3K are important spinal signaling kinases in acetic acid and phenyl-p-benzoquinone models of overt pain-like behavior and there is also activation of spinal microglia indicating that it is also important to determine whether drugs tested in these models also modulate such spinal mechanisms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation-mediated neurodegeneration occurs in the acute and the chronic/progressive phases of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Classically-activated microglia (M1) are key players mediating this process through secretion of soluble factors including nitric oxide (NO) and tumor necrosis factor (TNF). Here, galectin-1, an endogenous glycan-binding protein, was identified as a pivotal regulatory mechanism that limits M1 microglia activation and neurodegeneration, by targeting the activation of p38MAPK- and CREB-dependent pathways and hierarchically controlling downstream pro-inflammatory mediators such as iNOS, TNF and CCL2. Galectin-1 is highly expressed in the acute phase of EAE and its targeted deletion results in pronounced inflammation-induced neurodegeneration. These findings identify an essential role of galectin-1-glycan lattices in tempering microglia activation, brain inflammation and neurodegeneration with critical therapeutic implications in relapsing-remitting and secondary progressive MS.rnMicroglia with distinct phenotypes are implicated in neurotoxicity, neuroprotection, and in modulation of endogenous repair by NSCs. However the precise molecular mechanisms underlying this diversity in fuction are still unknown. rnUsing a model of EAE, transcriptional profiling of isolated SVZ microglia from the acute and chronic disease phases of EAE was performed. The results from this study suggest that microglia exhibit disease phase specific gene expression signatures, that correspond to unique GO functions and genomic networks. These data demonstrate for the first time, distinct transcriptional networks of microglia activation in vivo, that support their role as mediators of injury or repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicity of pneumococci and endotoxin in primary cultures of rat neurons, astrocytes, and microglia and in a human astrocyte and two human glial cell lines was determined. Heat-inactivated, rough pneumococci (up to 10(8) cfu/mL) or their cell wall (up to 50 micrograms/mL) produced dose-dependent toxicity after 48 h in microglial cells and to a lesser extent in astrocytes but not in neurons. Toxicity was similar for equivalent doses of heat-inactivated organisms and pneumococcal cell wall, but time-course experiments showed significant differences between the two stimuli. Endotoxin at concentrations of up to 5 micrograms/mL did not induce significant toxicity in any of the cells. Thus, pneumococci can induce toxicity in two brain cell types, microglia and astrocytes, and the pneumococcal cell wall appears to mediate toxicity. Direct toxic effects of bacteria on brain cells may in part be responsible for brain injury during meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Excessive and abnormal accumulation of alpha-synuclein (α-synuclein) is a factor contributing to pathogenic cell death in Parkinson's disease. The purpose of this study, based on earlier observations of Parkinson's disease cerebrospinal fluid (PD-CSF) initiated cell death, was to determine the effects of CSF from PD patients on the functionally different microglia and astrocyte glial cell lines. Microglia cells from human glioblastoma and astrocytes from fetal brain tissue were cultured, grown to confluence, treated with fixed concentrations of PD-CSF, non-PD disease control CSF, or control no-CSF medium, then photographed and fluorescently probed for α-synuclein content by deconvolution fluorescence microscopy. Outcome measures included manually counted cell growth patterns from day 1-8; α-synuclein density and distribution by antibody tagged 3D model stacked deconvoluted fluorescent imaging. RESULTS: After PD-CSF treatment, microglia growth was reduced extensively, and a non-confluent pattern with morphological changes developed, that was not evident in disease control CSF and no-CSF treated cultures. Astrocyte growth rates were similarly reduced by exposure to PD-CSF, but morphological changes were not consistently noted. PD-CSF treated microglia showed a significant increase in α-synuclein content by day 4 compared to other treatments (p ≤ 0.02). In microglia only, α-synuclein aggregated and redistributed to peri-nuclear locations. CONCLUSIONS: Cultured microglia and astrocytes are differentially affected by PD-CSF exposure compared to non-PD-CSF controls. PD-CSF dramatically impacts microglia cell growth, morphology, and α-synuclein deposition compared to astrocytes, supporting the hypothesis of cell specific susceptibility to PD-CSF toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outcome following traumatic brain injury (TBI) is in large part determined by the combined action of multiple processes. In order to better understand the response of the central nervous system to injury, we utilized an antibody array to simultaneously screen 507 proteins for altered expression in the injured hippocampus, a structure critical for memory formation. Array analysis indicated 41 candidate proteins have altered expression levels 24h after TBI. Of particular interest was catechol-O-methyl transferase (COMT), an enzyme involved in metabolizing catecholamines released following neuronal activity. Altered catecholamine signaling has been observed after brain injury, and may contribute to the cognitive dysfunctions and behavioral deficits often experienced after TBI. Our data shows that COMT expression in the injured ipsilateral hippocampus was elevated for at least 14 d after controlled cortical impact injury. We found strong co-localization of COMT immunoreactivity with the microglia marker Iba1 near the injury site. Since dopamine transporter expression has been reported to be down-regulated after brain injury, COMT-mediated catecholamine metabolism may play a more prominent role in terminating catecholamine signaling in injured areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently identified chemokine, fractalkine, is a member of the chemokine gene family, which consists principally of secreted, proinflammatory molecules. Fractalkine is distinguished structurally by the presence of a CX3C motif as well as transmembrane spanning and mucin-like domains and shows atypical constitutive expression in a number of nonhematopoietic tissues, including brain. We undertook an extensive characterization of this chemokine and its receptor CX3CR1 in the brain to gain insights into use of chemokine-dependent systems in the central nervous system. Expression of fractalkine in rat brain was found to be widespread and localized principally to neurons. Recombinant rat CX3CR1, as expressed in Chinese hamster ovary cells, specifically bound fractalkine and signaled in the presence of either membrane-anchored or soluble forms of fractalkine protein. Fractalkine stimulated chemotaxis and elevated intracellular calcium levels of microglia; these responses were blocked by anti-CX3CR1 antibodies. After facial motor nerve axotomy, dramatic changes in the levels of CX3CR1 and fractalkine in the facial nucleus were evident. These included increases in the number and perineuronal location of CX3CR1-expressing microglia, decreased levels of motor neuron-expressed fractalkine mRNA, and an alteration in the forms of fractalkine protein expressed. These data describe mechanisms of cellular communication between neurons and microglia, involving fractalkine and CX3CR1, which occur in both normal and pathological states of the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junctional communication between microglia was investigated at rat brain stab wounds and in primary cultures of rat and mouse cells. Under resting conditions, rat microglia (FITC-isolectin-B4-reactive cells) were sparsely distributed in the neocortex, and most (95%) were not immunoreactive for Cx43, a gap junction protein subunit. At brain stab wounds, microglia progressively accumulated over several days and formed aggregates that frequently showed Cx43 immunoreactivity at interfaces between cells. In primary culture, microglia showed low levels of Cx43 determined by Western blotting, diffuse intracellular Cx43 immunoreactivity, and a low incidence of dye coupling. Treatment with the immunostimulant bacterial lipopolysaccharide (LPS) or the cytokines interferon-γ (INF-γ) or tumor necrosis factor-α (TNF-α) one at a time did not increase the incidence of dye coupling. However, microglia treated with INF-γ plus LPS showed a dramatic increase in dye coupling that was prevented by coapplication of an anti-TNF-α antibody, suggesting the release and autocrine action of TNF-α. Treatment with INF-γ plus TNF-α also greatly increased the incidence of dye coupling and the Cx43 levels with translocation of Cx43 to cell–cell contacts. The cytokine-induced dye coupling was reversibly inhibited by 18α-glycyrrhetinic acid, a gap junction blocker. Cultured mouse microglia also expressed Cx43 and developed dye coupling upon treatment with cytokines, but microglia from homozygous Cx43-deficient mice did not develop significant dye coupling after treatment with either INF-γ plus LPS or INF-γ plus TNF-α. This report demonstrates that microglia can communicate with each other through gap junctions that are induced by inflammatory cytokines, a process that may be important in the elaboration of the inflammatory response.