939 resultados para MAMMOGRAPHIC X-RAY SPECTRA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protective shielding design of a mammography facility requires the knowledge of the scattered radiation by the patient and image receptor components. The shape and intensity of secondary x-ray beams depend on the kVp applied to the x-ray tube, target/filter combination, primary x-ray field size, and scattering angle. Currently, shielding calculations for mammography facilities are performed based on scatter fraction data for Mo/Mo target/filter, even though modern mammography equipment is designed with different anode/filter combinations. In this work we present scatter fraction data evaluated based on the x-ray spectra produced by a Mo/Mo, Mo/Rh and W/Rh target/filter, for 25, 30 and 35 kV tube voltages and scattering angles between 30 and 165 degrees. Three mammography phantoms were irradiated and the scattered radiation was measured with a CdZnTe detector. The primary x-ray spectra were computed with a semiempirical model based on the air kerma and HVL measured with an ionization chamber. The results point out that the scatter fraction values are higher for W/Rh than for Mo/Mo and Mo/Rh, although the primary and scattered air kerma are lower for W/Rh than for Mo/Mo and Mo/Rh target/filter combinations. The scatter fractions computed in this work were applied in a shielding design calculation in order to evaluate shielding requirements for each of these target/filter combinations. Besides, shielding requirements have been evaluated converting the scattered air kerma from mGy/week to mSv/week adopting initially a conversion coefficient from air kerma to effective dose as 1 Sv/Gy and then a mean conversion coefficient specific for the x-ray beam considered. Results show that the thickest barrier should be provided for Mo/Mo target/filter combination. They also point out that the use of the conversion coefficient from air kerma to effective dose as 1 Sv/Gy is conservatively high in the mammography energy range and overestimate the barrier thickness. (c) 2008 American Association of Physicists in Medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slag composition determines the physical and chemical properties as well as the application performance of molten oxide mixtures. Therefore, it is necessary to establish a routine instrumental technique to produce accurate and precise analytical results for better process and production control. In the present paper, a multi-component analysis technique of powdered metallurgical slag samples by X-ray Fluorescence Spectrometer (XRFS) has been demonstrated. This technique provides rapid and accurate results, with minimum sample preparation. It eliminates the requirement for a fused disc, using briquetted samples protected by a layer of Borax(R). While the use of theoretical alpha coefficients has allowed accurate calibrations to be made using fewer standard samples, the application of pseudo-Voight function to curve fitting makes it possible to resolve overlapped peaks in X-ray spectra that cannot be physically separated. The analytical results of both certified reference materials and industrial slag samples measured using the present technique are comparable to those of the same samples obtained by conventional fused disc measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cosmic X-ray background synthesis models (Gilli 2007) require a significant fraction of obscured AGN, some of which are expected to be heavily obscured (Compton-thick), but the number density of observationally found obscured sources is still an open issue (Vignali 2010, 2014). This thesis work takes advantage of recent NuSTAR data and is based on a multiwavelength research approach. Gruppioni et al. 2016 compared the AGN bolometric luminosity, for a sample of local 12 micron Seyfert galaxies, derived from the SED decomposition to the same quantity obtained by the 2-10 keV luminosity (IPAC-NED). A difference up to two orders of magnitude resulted between these quantities for some sources. Thus, the intrinsic X-ray luminosity obtained correcting for the obscuration may be underestimated. In this thesis we have tested this hypothesis by re-analysing the X-ray spectra of three of the sources (UGC05101, NGC1194 and NGC3079), for which observations from NuSTAR and Chandra and/or XMM-Newton were available. This is meant to extend our analysis to energies above 10 keV and thus estimate the AGN column density as reliable as possible. For spectral fitting we made use of both the commonly used XSPEC package and the two very recent MYtorus and BNtorus physical models. The available wide bandpass allowed us to achieve new and more solid insights into the X-ray spectral properties of these sources. The measured absorption column densities are highly suggestive of heavy obscuration. Once corrected the X-ray AGN luminosity for the obscuration estimated through our spectral analysis, we compared the L(X) values in the 2-10 keV band with those derived from the MIR band, by means of the relation by Gandhi, 2009. As expected, the values derived from this relation are in good agreement with those we measured, indicating that the column densities were underestimated in the previous literature works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New arguments proving that successive (repeated) measurements have a memory and actually remember each other are presented. The recognition of this peculiarity can change essentially the existing paradigm associated with conventional observation in behavior of different complex systems and lead towards the application of an intermediate model (IM). This IM can provide a very accurate fit of the measured data in terms of the Prony's decomposition. This decomposition, in turn, contains a small set of the fitting parameters relatively to the number of initial data points and allows comparing the measured data in cases where the “best fit” model based on some specific physical principles is absent. As an example, we consider two X-ray diffractometers (defined in paper as A- (“cheap”) and B- (“expensive”) that are used after their proper calibration for the measuring of the same substance (corundum a-Al2O3). The amplitude-frequency response (AFR) obtained in the frame of the Prony's decomposition can be used for comparison of the spectra recorded from (A) and (B) - X-ray diffractometers (XRDs) for calibration and other practical purposes. We prove also that the Fourier decomposition can be adapted to “ideal” experiment without memory while the Prony's decomposition corresponds to real measurement and can be fitted in the frame of the IM in this case. New statistical parameters describing the properties of experimental equipment (irrespective to their internal “filling”) are found. The suggested approach is rather general and can be used for calibration and comparison of different complex dynamical systems in practical purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

J. Am. Chem. Soc., 2004, 126 (28), pp 8614–8615 DOI: 10.1021/ja0490222

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary beam spectra were obtained for an X-ray industrial equipment (40-150 kV), and for a clinical mammography apparatus (25-35 kV) from beams scattered at angles close to 90 degrees, measured with a CdTe Compton spectrometer. Actual scattering angles were determined from the Compton energy shift of characteristic X-rays or spectra end-point energy. Evaluated contribution of coherent scattering amounts to more than 15% of fluence in mammographic beams. This technique can be used in clinical environments. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detector system that can measure X-ray intensity in the mammographic range of 22 to 36 kVp (equivalent photon energies ofthe beam between 11 and 15 keV) is presented. It consists of a lithium mobate detector and a high-sensitivity current-to-voltage converter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel ferrite powders with a nominal NiFe2O4 composition were synthesized by combustion reaction using urea as fuel. The powder was obtained using a vitreous silica basin heated directly on a hot plate at 480 degrees C until self-ignition occurred. After combustion, the powder was calcined at 700 degrees C for 2 h. The formation of the spinel phase and the distribution of cations in the tetrahedral and octahedral sites of the crystal structure were investigated by the Rietveld method, using synchrotron X-ray diffraction data and Mossbauer spectroscopy. The material presented a crystallite size of 120 nm and magnetic properties. The resulting stoichiometry after the Rietveld refinement was (Fe-0.989(2) Ni-0.011(2)) [Fe-1.012(2) Ni-0.989(2)] O-4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effects of niobium beam filtration on absorbed doses, on image density and contrast, and on photon spectra with conventional and high-frequency dental x-ray generators. Added niobium reduced entry and superficial absorbed doses in periapical radiography by 9% to 40% with film and digital image receptors, decreased the radiation necessary to produce a given image density on E-speed film and reduced image contrast on D- and E-speed films. As shown by increased half-value layers for aluminum, titanium, and copper and by pulse-height analyses of beam spectra, niobium increased average beam energy by 6% to 19%. Despite the benefits of adding niobium on patient dose reduction and on narrowing the beams' energy spectra, the beam can be overhardened. Adding niobium, therefore, strikes the best balance between radiation dose reduction and beam attenuation, with its risks of increased exposure times, motion blur, and diminished image contrast, when it is used at modest thicknesses (30 μm) and at lower kVp (70) settings. © 1995 Mosby-Year Book, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partendo dal campione di AGN presente nella survey di XMM-COSMOS, abbiamo cercato la sua controparte ottica nel database DR10 della Sloan Digital Sky Survey (SDSS), ed il match ha portato ad una selezione di 200 oggetti, tra cui stelle, galassie e quasar. A partire da questo campione, abbiamo selezionato tutti gli oggetti con un redshift z<0.86 per limitare l’analisi agli AGN di tipo 2, quindi siamo giunti alla selezione finale di un campione di 30 sorgenti. L’analisi spettrale è stata fatta tramite il task SPECFIT, presente in IRAF. Abbiamo creato due tipi di modelli: nel primo abbiamo considerato un’unica componente per ogni riga di emissione, nel secondo invece è stata introdotta un’ulteriore com- ponente limitando la FWHM della prima ad un valore inferiore a 500 km\s. Le righe di emissione di cui abbiamo creato un modello sono le seguenti: Hβ, [NII]λλ 6548,6581, Hα, [SII]λλ 6716,6731 e [OIII]λλ 4959,5007. Nei modelli costruiti abbiamo tenuto conto della fisica atomica per quel che riguarda i rapporti dei flussi teorici dei doppietti dell’azoto e dell’ossigeno, fissandoli a 1:3 per entrambi; nel caso del modello ad una componente abbiamo fissato le FWHM delle righe di emissione; mentre nel caso a due componenti abbiamo fissato le FWHM delle componenti strette e larghe, separatamente. Tenendo conto del chi-quadro ottenuto da ogni fit e dei residui, è stato possibile scegliere tra i due modelli per ogni sorgente. Considerato che la nostra attenzione è focalizzata sulla cinematica dell’ossigeno, abbiamo preso in considerazione solo le sorgenti i cui spettri mostravano la riga suddetta, cioè 25 oggetti. Su questa riga è stata fatta un’analisi non parametrica in modo da utilizzare il metodo proposto da Harrison et al. (2014) per caratterizzare il profilo di riga. Sono state determinate quantità utili come il 2 e il 98 percentili, corrispondenti alle velocità massime proiettate del flusso di materia, e l’ampiezza di riga contenente l’80% dell’emissione. Per indagare sull’eventuale ruolo che ha l’AGN nel guidare questi flussi di materia verso l’esterno, abbiamo calcolato la massa del gas ionizzato presente nel flusso e il tasso di energia cinetica, tenendo conto solo delle componenti larghe della riga di [OIII] λ5007. Per la caratterizzazione energetica abbiamo considerato l’approccio di Cano-Diaz et al (2012) e di Heckman (1990) in modo da poter ottenere un limite inferiore e superiore della potenza cinetica, adottando una media geometrica tra questi due come valore indicativo dell’energetica coinvolta. Confrontando la potenza del flusso di gas con la luminosità bolometrica dell’AGN, si è trovato che l’energia cinetica del flusso di gas è circa lo 0.3-30% della luminosità dell’AGN, consistente con i modelli che considerano l’AGN come principale responsabile nel guidare questi flussi di gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every x-ray attenuation curve inherently contains all the information necessary to extract the complete energy spectrum of a beam. To date, attempts to obtain accurate spectral information from attenuation data have been inadequate.^ This investigation presents a mathematical pair model, grounded in physical reality by the Laplace Transformation, to describe the attenuation of a photon beam and the corresponding bremsstrahlung spectral distribution. In addition the Laplace model has been mathematically extended to include characteristic radiation in a physically meaningful way. A method to determine the fraction of characteristic radiation in any diagnostic x-ray beam was introduced for use with the extended model.^ This work has examined the reconstructive capability of the Laplace pair model for a photon beam range of from 50 kVp to 25 MV, using both theoretical and experimental methods.^ In the diagnostic region, excellent agreement between a wide variety of experimental spectra and those reconstructed with the Laplace model was obtained when the atomic composition of the attenuators was accurately known. The model successfully reproduced a 2 MV spectrum but demonstrated difficulty in accurately reconstructing orthovoltage and 6 MV spectra. The 25 MV spectrum was successfully reconstructed although poor agreement with the spectrum obtained by Levy was found.^ The analysis of errors, performed with diagnostic energy data, demonstrated the relative insensitivity of the model to typical experimental errors and confirmed that the model can be successfully used to theoretically derive accurate spectral information from experimental attenuation data. ^