985 resultados para Méthodes à noyaux
Resumo:
Collection : Encyclopédie scientifique des aide-mémoire
Resumo:
It is well-known that non-cooperative and cooperative game theory may yield different solutions to games. These differences are particularly dramatic in the case of truels, or three-person duels, in which the players may fire sequentially or simultaneously, and the games may be one-round or n-round. Thus, it is never a Nash equilibrium for all players to hold their fire in any of these games, whereas in simultaneous one-round and n-round truels such cooperation, wherein everybody survives, is in both the a -core and ß -core. On the other hand, both cores may be empty, indicating a lack of stability, when the unique Nash equilibrium is one survivor. Conditions under which each approach seems most applicable are discussed. Although it might be desirable to subsume the two approaches within a unified framework, such unification seems unlikely since the two approaches are grounded in fundamentally different notions of stability.
Resumo:
Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.
Resumo:
Ce texte propose des méthodes d’inférence exactes (tests et régions de confiance) sur des modèles de régression linéaires avec erreurs autocorrélées suivant un processus autorégressif d’ordre deux [AR(2)], qui peut être non stationnaire. L’approche proposée est une généralisation de celle décrite dans Dufour (1990) pour un modèle de régression avec erreurs AR(1) et comporte trois étapes. Premièrement, on construit une région de confiance exacte pour le vecteur des coefficients du processus autorégressif (φ). Cette région est obtenue par inversion de tests d’indépendance des erreurs sur une forme transformée du modèle contre des alternatives de dépendance aux délais un et deux. Deuxièmement, en exploitant la dualité entre tests et régions de confiance (inversion de tests), on détermine une région de confiance conjointe pour le vecteur φ et un vecteur d’intérêt M de combinaisons linéaires des coefficients de régression du modèle. Troisièmement, par une méthode de projection, on obtient des intervalles de confiance «marginaux» ainsi que des tests à bornes exacts pour les composantes de M. Ces méthodes sont appliquées à des modèles du stock de monnaie (M2) et du niveau des prix (indice implicite du PNB) américains
Resumo:
Rapport de recherche