997 resultados para Lung Clearance Index
Resumo:
BACKGROUND: Functional deterioration in cystic fibrosis (CF) may be reflected by increasing bronchial obstruction and, as recently shown, by ventilation inhomogeneities. This study investigated which physiological factors (airway obstruction, ventilation inhomogeneities, pulmonary hyperinflation, development of trapped gas) best express the decline in lung function, and what role specific CFTR genotypes and different types of bronchial infection may have upon this process. METHODS: Serial annual lung function tests, performed in 152 children (77 males; 75 females) with CF (age range: 6-18 y) provided data pertaining to functional residual capacity (FRCpleth, FRCMBNW), volume of trapped gas (VTG), effective specific airway resistance (sReff), lung clearance index (LCI), and forced expiratory indices (FVC, FEV1, FEF50). RESULTS: All lung function parameters showed progression with age. Pulmonary hyperinflation (FRCpleth > 2SDS) was already present in 39% of patients at age 6-8 yrs, increasing to 67% at age 18 yrs. The proportion of patients with VTG > 2SDS increased from 15% to 54% during this period. Children with severe pulmonary hyperinflation and trapped gas at age 6-8 yrs showed the most pronounced disease progression over time. Age related tracking of lung function parameters commences early in life, and is significantly influenced by specific CFTR genotypes. The group with chronic P. aeruginosa infection demonstrated most rapid progression in all lung function parameters, whilst those with chronic S. aureus infection had the slowest rate of progression. LCI, measured as an index of ventilation inhomogeneities was the most sensitive discriminator between the 3 types of infection examined (p < 0.0001). CONCLUSION: The relationships between lung function indices, CFTR genotypes and infective organisms observed in this study suggest that measurement of other lung function parameters, in addition to spirometry alone, may provide important information about disease progression in CF.
Resumo:
Background and Aim In patients with cystic fibrosis (CF) the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth), lung clearance index (LCI), trapped gas (VTG), airway resistance (sReff), and forced expiratory indices (FEV1, FEF50), were collected in 178 children (88 males; 90 females) with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p < 0.0001), FEV1 (p < 0.001), FEF50 (p < 0.002), and LCI (p < 0.002), indicating that oxygenation was associated with the degree of pulmonary hyperinflation, ventilation inhomogeneities and impeded airway function. PaCO2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation.
Resumo:
BACKGROUND To standardize multiple-breath washout (MBW) measurements, 1L tidal volume (VT) protocols were suggested. The effect on MBW derived ventilation inhomogeneity (VI) indices is unclear. METHODS We compared VI indices from free breathing MBW at baseline to 1L VT MBW performed in triplicates in 35 children (20 with CF). Mean (range) age was 12.8 (7.0-16.7) years, weight 42 (20-64) kg and height 151 (117-170) cm. RESULTS Baseline lung clearance index (LCI) increased from mean (SD) 11.0 (2.2) to 13.0 (2.6), p=0.011, in CF and from 6.8 (0.5) to 7.7 (1.4), p=0.004, in controls. Moment ratio and Scond similarly increased. While change in VI indices was heterogeneous in individuals, decrease in functional residual capacity was most strongly associated with LCI increase. CONCLUSION MBW protocols strongly influence measures of VI. The 1L VT MBW protocol leads to overestimation of VI and is not recommended in children.
Resumo:
OBJECTIVES To assess the feasibility of using volumetric capnography in spontaneously breathing small infants and its ability to discriminate between infants with and without bronchopulmonary dysplasia (BPD). STUDY DESIGN Lung function variables for 231 infants (102 term, 52 healthy preterm, 77 BPD), matched for post-conceptional age of 44 weeks, were collected. BPD was defined as supplemental oxygen requirement at 36 weeks post-menstrual age. Tidal breath-by-breath volume capnograms were obtained by mainstream capnography. The capnographic slope of phase II (SII) and slope of phase III (SIII) were calculated and compared between study groups. The effect of BPD, tidal volume (VT), respiratory rate (RR), and prematurity on the magnitude of the slopes was assessed. RESULTS SII was steeper in infants with BPD (100 ± 28/L) compared with healthy preterm (88 ± 22/L; P = .007) and term infants (79 ± 18/L; P < .001), but this finding was attributed to differences in VT, RR, and gestational age. SIII was steeper in the BPD group (26.8 ± 14.1/L) compared with healthy preterm (16.2 ± 6.2/L; P < .001) and term controls (14.8 ± 5.4/L; P < .001). BPD was a significant predictor of SIII independently of VT, RR, and gestational age. The ability of SIII to discriminate between BPD and controls was significantly higher compared with lung clearance index (area under the curve 0.83 vs 0.56; P < .001). CONCLUSIONS Volumetric capnography may provide valuable information regarding functional lung alterations related to BPD and might be considered as an alternative to more involved lung function techniques for monitoring chronic lung disease during early infancy.
Resumo:
BACKGROUND The lung clearance index (LCI) measured by multiple-breath washout (MBW) has been proposed as an outcome for clinical trials; however, MBW is time consuming and LCI can be affected by breathing pattern. We aimed to evaluate moment ratios and abbreviated LCI in school-aged children with mild-to-moderate CF lung disease. METHODS Using existing data from three studies we assessed the sensitivity of moment ratios and abbreviated LCIs to (i) detect mild-to-moderate CF lung disease and (ii) detect treatment effects after 4weeks of hypertonic saline or dornase alfa inhalation. MBW was measured by respiratory mass spectrometry using 4% "sulphur hexafluoride as a tracer gas. RESULTS Compared to the traditional LCI, moment ratios and abbreviated LCIs were similarly sensitive to detect CF lung disease. Moment ratios consistently demonstrated treatment effects, whereas abbreviated LCIs were less sensitive. CONCLUSIONS Both moment ratios and abbreviated LCI are suitable to differentiate health from disease. Sensitivity is decreased for abbreviated LCIs in interventional studies in mild CF lung disease.
Resumo:
Prematurity is the most common disruptor of lung development. The aim of our study was to examine the function of the more vulnerable peripheral airways in former preterm children by multiple-breath washout (MBW) measurements.86 school-aged children, born between 24 and 35 weeks of gestation and 49 term-born children performed nitrogen MBW. Lung clearance index (LCI), and slope III-derived Scond and Sacin were assessed as markers for global, convection-dependent and diffusion-convection-dependent ventilation inhomogeneity, respectively.We analysed the data of 77 former preterm (mean (range) age 9.5 (7.2-12.8) years) and 46 term-born children (mean age 9.9 (6.0-15.9) years). LCI and Sacin did not differ between preterm and term-born children. Scond was significantly elevated in preterm compared to term-born participants (mean difference z-score 1.74, 95% CI 1.17-2.30; p<0.001), with 54% of former preterm children showing elevated Scond. In multivariable regression analysis Scond was significantly related only to gestational age (R(2)=0.37).Normal Sacin provides evidence for a functionally normal alveolar compartment, while elevated Scond indicates impaired function of more proximal conducting airways. Together, our findings support the concept of continued alveolarisation, albeit with "dysanaptic" lung growth in former preterm children.
Resumo:
BACKGROUND AND OBJECTIVES Multiple-breath washout (MBW) is an attractive test to assess ventilation inhomogeneity, a marker of peripheral lung disease. Standardization of MBW is hampered as little data exists on possible measurement bias. We aimed to identify potential sources of measurement bias based on MBW software settings. METHODS We used unprocessed data from nitrogen (N2) MBW (Exhalyzer D, Eco Medics AG) applied in 30 children aged 5-18 years: 10 with CF, 10 formerly preterm, and 10 healthy controls. This setup calculates the tracer gas N2 mainly from measured O2 and CO2concentrations. The following software settings for MBW signal processing were changed by at least 5 units or >10% in both directions or completely switched off: (i) environmental conditions, (ii) apparatus dead space, (iii) O2 and CO2 signal correction, and (iv) signal alignment (delay time). Primary outcome was the change in lung clearance index (LCI) compared to LCI calculated with the settings as recommended. A change in LCI exceeding 10% was considered relevant. RESULTS Changes in both environmental and dead space settings resulted in uniform but modest LCI changes and exceeded >10% in only two measurements. Changes in signal alignment and O2 signal correction had the most relevant impact on LCI. Decrease of O2 delay time by 40 ms (7%) lead to a mean LCI increase of 12%, with >10% LCI change in 60% of the children. Increase of O2 delay time by 40 ms resulted in mean LCI decrease of 9% with LCI changing >10% in 43% of the children. CONCLUSIONS Accurate LCI results depend crucially on signal processing settings in MBW software. Especially correct signal delay times are possible sources of incorrect LCI measurements. Algorithms of signal processing and signal alignment should thus be optimized to avoid susceptibility of MBW measurements to this significant measurement bias.
Resumo:
Smoke inhalation injuries are the leading cause of mortality from burn injury. Airway obstruction due to mucus plugging and bronchoconstriction can cause severe ventilation inhomogeneity and worsen hypoxia. Studies describing changes of viscoelastic characteristics of the lung after smoke inhalation are missing. We present results of a new smoke inhalation device in sheep and describe pathophysiological changes after smoke exposure. Fifteen female Merino ewes were anesthetized and intubated. Baseline data using electrical impedance tomography and multiple-breath inert-gas washout were obtained by measuring ventilation distribution, functional residual capacity, lung clearance index, dynamic compliance, and stress index. Ten sheep were exposed to standardized cotton smoke insufflations and five sheep to sham smoke insufflations. Measured carboxyhemoglobin before inhalation was 3.87 +/- 0.28% and 5 min after smoke was 61.5 +/- 2.1%, range 50-69.4% ( P < 0.001). Two hours after smoke functional residual capacity decreased from 1,773 +/- 226 to 1,006 +/- 129 ml and lung clearance index increased from 10.4 +/- 0.4 to 14.2 +/- 0.9. Dynamic compliance decreased from 56.6 +/- 5.5 to 32.8 +/- 3.2 ml/ cmH(2)O. Stress index increased from 0.994 +/- 0.009 to 1.081 +/- 0.011 ( P < 0.01) ( all means +/- SE, P < 0.05). Electrical impedance tomography showed a shift of ventilation from the dependent to the independent lung after smoke exposure. No significant change was seen in the sham group. Smoke inhalation caused immediate onset in pulmonary dysfunction and significant ventilation inhomogeneity. The smoke inhalation device as presented may be useful for interventional studies.
Resumo:
Cystic fibrosis (CF) is the most common autosomal recessive disorder affecting Caucasian populations. The pathophysiology of this disorder predisposes the lungs of affected patients to chronic infection, typically by Pseudomonas aeruginosa, which is the main cause of morbidity and mortality. Recently, attention has focused on aerosolised polymyxins, which are given prophylactically in an effort to limit infection and subsequent lung damage. This class of antimicrobial compounds is highly active against P. aeruginosa and possess the advantage that resistance rarely develops. However, the rapid lung clearance of antibiotics is a well documented phenomenon and it was postulated that polymyxin treatment could be further improved by liposomal encapsulation. As part of the development of liposomal polymyxin B, analytical methodology (radiolabelling, HPLC and protein assay) applicable to liposomal formulations was established. Liposomes were prepared by the dehydration-rehydration method and encapsulation efficiencies were determined for a number of phospholipid compositions. Vesicles were characterised with respect to size, zeta potential, morphology and release characteristics. The surface hydrophobicity of vesicles was quantified by hydrophobic interaction chromatography and it was found that this method produced comparable results to techniques conventionally used to assess this property. In vivo testing of liposomal polymyxins demonstrated that encapsulation successfully prevented the rapid pulmonary clearance of PXB. Antimicrobial activity of liposomal formulations was quantified and found to be dependent on both the vesicle surface characteristics and their release profile. Investigation of the interaction of PXB with lipopolysaccharide was undertaken and results demonstrated that PXB caused significant structural distortion of the lipid A region. This may be sufficient to abrogate the potentiating action of LPS in the inflammatory cascade.
Resumo:
This study describes the developmental changes in pulmonary surfactant (PS) lipids throughout incubation in the sea turtle, Chelonia mydas. Total phospholipid (PL), disaturated phospholipid (DSP) and cholesterol (Chol) harvested from lung washings increased with advancing incubation, where secretion was maximal at pipping, coincident with the onset of pulmonary ventilation. The DSP/PL ratio increased, whereas the Chol/PL and the Chol/DSP ratio declined throughout development. The phospholipids, therefore, are independently regulated from Chol and their development matches that of mammals. To explore whether hypoxia could elicit an effect on the development of the PS system, embryos were exposed to a chronic dose of 17% O-2 for the final similar to 40% of incubation. Hypoxia did not affect incubation time, absolute, nor relative abundance of the surfactant lipids, demonstrating that the development of the system is robust and that embryonic development continues unabated under mild hypoxia. Hypoxia-incubated hatchlings had lighter wet lung weights than those from normoxia, inferring that mild hypoxia facilitates lung clearance in this species. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
OBJECTIVE: To estimate the response in lung growth and vascularity after fetal endoscopic tracheal occlusion for severe congenital diaphragmatic hernia in the prediction of neonatal survival.METHODS: Between January 2006 and December 2010, fetal lung parameters (observed-to-expected lung-to-head ratio; observed-to-expected lung volume; and contralateral lung vascularization index) were evaluated before fetal tracheal occlusion and were evaluated longitudinally every 2 weeks in 72 fetuses with severe isolated congenital diaphragmatic hernia. Thirty-five fetuses underwent fetal endoscopic tracheal occlusion and 37 cases did not.RESULTS: Survival rate was significantly higher in the fetal endoscopic tracheal occlusion group (54.3%) than in the no fetal endoscopic tracheal occlusion group (5.4%, P<.01). Fetal endoscopic tracheal occlusion resulted in a significant improvement in fetal lung size and pulmonary vascularity when compared with fetuses that did not go to the fetal intervention (increase of the observed-to-expected lung-to-head ratio, observed-to-expected total lung volume, and contralateral pulmonary vascularization index 56.2% compared with 0.3%, 37.9% compared with 0.1%, and 98.6% compared with 0.0%, respectively; P<.01). Receiver operating characteristic curves indicated that the observed-to-expected total fetal lung volume was the single best predictor of neonatal survival before fetal endoscopic tracheal occlusion (cutoff 0.23, area under the curve [AUC] 0.88, relative risk 5.3, 95% confidence interval [CI] 1.4-19.7). However, the contralateral lung vascularization index at 4 weeks after fetal endoscopic tracheal occlusion was more accurate in the prediction of neonatal outcome (cutoff 24.0%, AUC 0.98, relative risk 9.9, 95% CI 1.5-66.9) with the combination of observed-to-expected lung volumes and contralateral lung vascularization index at 4 weeks being the best predictor of outcome (AUC 0.98, relative risk 16.6, 95% CI 2.5-112.3).CONCLUSION: Fetal endoscopic tracheal occlusion improves survival rate by increasing the lung size and pulmonary vascularity in fetuses with severe congenital diaphragmatic hernia. The pulmonary response after fetal endoscopic tracheal occlusion can be used to predict neonatal survival. (Obstet Gynecol 2012; 119: 93-101) DOI: 10.1097/AOG.0b013e31823d3aea
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJECTIVE: To estimate the response in lung growth and vascularity after fetal endoscopic tracheal occlusion for severe congenital diaphragmatic hernia in the prediction of neonatal survival. METHODS: Between January 2006 and December 2010, fetal lung parameters (observed-to-expected lung-to-head ratio; observed-to-expected lung volume; and contralateral lung vascularization index) were evaluated before fetal tracheal occlusion and were evaluated longitudinally every 2 weeks in 72 fetuses with severe isolated congenital diaphragmatic hernia. Thirty-five fetuses underwent fetal endoscopic tracheal occlusion and 37 cases did not. RESULTS: Survival rate was significantly higher in the fetal endoscopic tracheal occlusion group (54.3%) than in the no fetal endoscopic tracheal occlusion group (5.4%, P<.01). Fetal endoscopic tracheal occlusion resulted in a significant improvement in fetal lung size and pulmonary vascularity when compared with fetuses that did not go to the fetal intervention (increase of the observed-to-expected lung-to-head ratio, observed-to-expected total lung volume, and contralateral pulmonary vascularization index 56.2% compared with 0.3%, 37.9% compared with 0.1%, and 98.6% compared with 0.0%, respectively; P<.01). Receiver operating characteristic curves indicated that the observed-to-expected total fetal lung volume was the single best predictor of neonatal survival before fetal endoscopic tracheal occlusion (cutoff 0.23, area under the curve [AUC] 0.88, relative risk 5.3, 95% confidence interval [CI] 1.4-19.7). However, the contralateral lung vascularization index at 4 weeks after fetal endoscopic tracheal occlusion was more accurate in the prediction of neonatal outcome (cutoff 24.0%, AUC 0.98, relative risk 9.9, 95% CI 1.5-66.9) with the combination of observed-to-expected lung volumes and contralateral lung vascularization index at 4 weeks being the best predictor of outcome (AUC 0.98, relative risk 16.6, 95% CI 2.5-112.3). CONCLUSION: Fetal endoscopic tracheal occlusion improves survival rate by increasing the lung size and pulmonary vascularity in fetuses with severe congenital diaphragmatic hernia. The pulmonary response after fetal endoscopic tracheal occlusion can be used to predict neonatal survival. (Obstet Gynecol 2012; 119: 93-101) DOI: 10.1097/AOG.0b013e31823d3aea
Resumo:
BACKGROUND: Lung retrieval from non-heart-beating donors (NHBD) has been introduced into clinical practice successfully. However, because of potentially deleterious effects of warm ischemia on microvascular integrity, use of NHBD lungs is limited by short tolerable time periods before preservation. Recently, improvement of NHBD graft function was demonstrated by donor pre-treatment using aerosolized Ventavis (Schering Inc., Berlin, Germany). Currently, there is no information whether additional application of this approach in reperfusion can further optimize immediate graft function. MATERIAL AND METHODS: Asystolic pigs (n = 5/group) were ventilated for 180-min of warm ischemia (groups 1-3). In groups 2 and 3, 100 microg Ventavis were aerosolized over 30-min using an ultrasonic nebulizer (Optineb). Lungs were then retrogradely preserved with Perfadex and stored for 3-h. After left lung transplantation and contralateral lung exclusion, grafts were reperfused for 6-h. Only in group 3, another dose of 100 microg Ventavis was aerosolized during the first 30-min of reperfusion. Hemodynamics, pO2/FiO2 and dynamic compliance were monitored continuously and compared to controls. Intraalveolar edema was quantified stereologically, and extravascular-lung-water-index (EVLWI) was measured. Statistics comprised ANOVA analysis with repeated measurements. RESULTS: Dynamic compliance was significantly lower in both Ventavis groups, but additional administration did not result in further improvement. Oxygenation, pulmonary hemodynamics, EVLWI and intraalveolar edema formation were comparable between groups. CONCLUSIONS: Alveolar deposition of Ventavis in NHBD lungs before preservation significantly improves dynamic lung compliance and represents an important strategy for improvement of preservation quality and expansion of warm ischemic intervals. However, additional application of this method in early reperfusion is of no benefit.
Resumo:
ABSTRACT: BACKGROUND: Translocation of nanoparticles (NP) from the pulmonary airways into other pulmonary compartments or the systemic circulation is controversially discussed in the literature. In a previous study it was shown that titanium dioxide (TiO2) NP were "distributed in four lung compartments (air-filled spaces, epithelium/endothelium, connective tissue, capillary lumen) in correlation with compartment size". It was concluded that particles can move freely between these tissue compartments. To analyze whether the distribution of TiO2 NP in the lungs is really random or shows a preferential targeting we applied a newly developed method for comparing NP distributions. METHODS: Rat lungs exposed to an aerosol containing TiO2 NP were prepared for light and electron microscopy at 1 h and at 24 h after exposure. Numbers of TiO2 NP associated with each compartment were counted using energy filtering transmission electron microscopy. Compartment size was estimated by unbiased stereology from systematically sampled light micrographs. Numbers of particles were related to compartment size using a relative deposition index and chi-squared analysis. RESULTS: Nanoparticle distribution within the four compartments was not random at 1 h or at 24 h after exposure. At 1 h the connective tissue was the preferential target of the particles. At 24 h the NP were preferentially located in the capillary lumen. CONCLUSION: We conclude that TiO2 NP do not move freely between pulmonary tissue compartments, although they can pass from one compartment to another with relative ease. The residence time of NP in each tissue compartment of the respiratory system depends on the compartment and the time after exposure. It is suggested that a small fraction of TiO2 NP are rapidly transported from the airway lumen to the connective tissue and subsequently released into the systemic circulation.