980 resultados para Linear profile


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atualmente, o crescimento dos problemas de vibrações excessivas sobre pisos mistos (aço-concreto) tem conduzido à necessidade de desenvolvimento de critérios específicos para projetos estruturais submetidos à ação de atividades humanas rítmicas. Com base no desenvolvimento desta dissertação de mestrado, objetiva-se, principalmente, verificar a influência das ligações estruturais (ligações viga-viga), sobre a resposta dinâmica não-linear de pisos mistos (aço-concreto) de edificações, quando submetidos a cargas dinâmicas humanas rítmicas. Deste modo, o carregamento dinâmico empregado para a simulação das atividades humanas sobre o modelo estrutural investigado foi obtido através de testes experimentais com indivíduos praticando atividades rítmicas e não rítmicas. O modelo analisado nesta dissertação corresponde a um piso misto (aço-concreto) com uma área total de 1600m2 e consiste de um ambiente onde serão desenvolvidas atividades de ginástica aeróbica. O sistema estrutural é constituído por lajes de concreto armado apoiadas sobre vigas de aço, simulando o comportamento de um sistema estrutural misto (aço-concreto) com interação total. A metodologia de análise desenvolvida emprega técnicas usuais de discretização presentes no método dos elementos finitos, com base no emprego do programa ANSYS. A modelagem do sistema contempla ligações estruturais do tipo rígidas, semirrígidas e flexíveis. Os valores das acelerações de pico foram comparados com os limites recomendados por normas de projeto, baseando-se em critérios de conforto humano. As conclusões alcançadas ao longo deste trabalho de pesquisa revelam que as ligações estruturais do tipo viga-viga não apresentam influência significativa, no que diz respeito a resposta dinâmica não-linear da estrutura. Por outro lado, as acelerações de pico obtidas com base na análise dinâmica não-linear apresentam valores elevados indicando que o piso misto (aço-concreto) investigado apresenta problemas de vibração excessiva inerentes ao conforto humano.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Adenosine-induced transient flow arrest has been used to facilitate clip ligation of intracranial aneurysms. However, the starting dose that is most likely to produce an adequate duration of profound hypotension remains unclear. We reviewed our experience to determine the dose-response relationship and apparent perioperative safety profile of adenosine in intracranial aneurysm patients. METHODS: This case series describes 24 aneurysm clip ligation procedures performed under an anesthetic consisting of remifentanil, low-dose volatile anesthetic, and propofol in which adenosine was used. The report focuses on the doses administered; duration of systolic blood pressure <60 mm Hg (SBP(<60 mm Hg)); and any cardiovascular, neurologic, or pulmonary complications observed in the perioperative period. RESULTS: A median dose of 0.34 mg/kg ideal body weight (range: 0.29-0.44 mg/kg) resulted in a SBP(<60 mm Hg) for a median of 57 seconds (range: 26-105 seconds). There was a linear relationship between the log-transformed dose of adenosine and the duration of a SBP(<60 mm Hg) (R(2) = 0.38). Two patients developed transient, hemodynamically stable atrial fibrillation, 2 had postoperative troponin levels >0.03 ng/mL without any evidence of cardiac dysfunction, and 3 had postoperative neurologic changes. CONCLUSIONS: For intracranial aneurysms in which temporary occlusion is impractical or difficult, adenosine is capable of providing brief periods of profound systemic hypotension with low perioperative morbidity. On the basis of these data, a dose of 0.3 to 0.4 mg/kg ideal body weight may be the recommended starting dose to achieve approximately 45 seconds of profound systemic hypotension during a remifentanil/low-dose volatile anesthetic with propofol induced burst suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pair plasma consisting of two types of ions, possessing equal masses and opposite charges, is considered. The nonlinear propagation of modulated electrostatic wave packets is studied by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasiacoustic lower moddfe and a Langmuir-like, as optic-type upper one, in agreement with experimental observations and theoretical predictions. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scale technique, the basic set of model equations is reduced to a nonlinear Schrodinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is stable and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets. These results are relevant to recent observations of electrostatic waves in pair-ion (fullerene) plasmas, and also with respect to electron-positron plasma emission in pulsar magnetospheres. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anisotropic impedance surfaces are employed as low-profile and broadband reflectors that convert orthogonal linear to right- and left-handed circular polarization respectively. By virtue of anisotropy, it is possible to independently control the reflection characteristics of two orthogonal linearly polarized incident plane waves and therefore achieve linear to circular polarization conversion. Equivalent circuits for anisotropic impedance surfaces with arbitrarily shaped elements are employed to demonstrate the operating principle and a design procedure is proposed. The proposed design procedure is demonstrated by means of an example involving a dipole array. A prototype is designed and its performance characteristics are evaluated. The 3-dB relative axial ratio bandwidth exceeds 60%, while low loss and angular stability are also reported. Numerical and experimental results on a fabricated prototype are presented to validate the synthesis and the performance. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of a search for the reactivation of active asteroid 176P/LINEAR during its 2011 perihelion passage using deep optical observations obtained before, during, and after that perihelion passage. Deep composite images of 176P constructed from data obtained between 2011 June and 2011 December show no visible signs of activity, while photometric measurements of the object during this period also show no significant brightness enhancements similar to that observed for 176P between 2005 November and 2005 December when it was previously observed to be active. An azimuthal search for dust emission likewise reveals no evidence for directed emission (i.e., a tail, as was previously observed for 176P), while a one-dimensional surface brightness profile analysis shows no indication of a spherically symmetric coma at any time in 2011. We conclude that 176P did not in fact exhibit activity in 2011, at least not on the level on which it exhibited activity in 2005, and suggest that this could be due to the devolatization or mantling of the active site responsible for its activity in 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of a new approach to the evaluation of surface gravity wave drag (GWD) is assessed. This approach uses linear theory, but incorporates the effects of wind profile shear and curvature, by means of a second-order WKB approximation. While the theory predicts the possibility of either drag enhancement or reduction, depending on the wind profile, results obtained with the ERA-40 reanalysis data clearly indicate the predominance of local drag enhancement. However, the global impact of shear on the atmospheric axial GWD torque comes mostly from regions with predominantly easterly flow, contributing to a slight reduction of the bias found in different studies of the global angular momentum budget. The relative correction due to shear on linear GWD is found not to depend too strongly on the levels chosen for the computation of the low-level wind derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model of orographic gravity wave drag due to sheared flow past elliptical mountains is developed. The model extends the domain of applicability of the well-known Phillips model to wind profiles that vary relatively slowly in the vertical, so that they may be treated using a WKB approximation. The model illustrates how linear processes associated with wind profile shear and curvature affect the drag force exerted by the airflow on mountains, and how it is crucial to extend the WKB approximation to second order in the small perturbation parameter for these effects to be taken into account. For the simplest wind profiles, the normalized drag depends only on the Richardson number, Ri, of the flow at the surface and on the aspect ratio, γ, of the mountain. For a linear wind profile, the drag decreases as Ri decreases, and this variation is faster when the wind is across the mountain than when it is along the mountain. For a wind that rotates with height maintaining its magnitude, the drag generally increases as Ri decreases, by an amount depending on γ and on the incidence angle. The results from WKB theory are compared with exact linear results and also with results from a non-hydrostatic nonlinear numerical model, showing in general encouraging agreement, down to values of Ri of order one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using linear theory, it is shown that, in resonant flow over a 2D mountain ridge, such as exists when a layer of uniform wind is topped by an environmental critical level, the conditions for internal gravity-wave breaking are different from those determined in previous studies for non-resonant flows. For Richardson numbers in the shear layer not exceeding 2.25, two zones of flow overturning exist, respectively below and downstream and above and upstream of the expected locations. Flow overturning occurs for values of the dimensionless height of the ridge smaller than those required for a uniform wind profile. These results may have implications for the physical understanding of high-drag states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enhanced radar return associated with melting snow, ‘the bright band’, can lead to large overestimates of rain rates. Most correction schemes rely on fitting the radar observations to a vertical profile of reflectivity (VPR) which includes the bright band enhancement. Observations show that the VPR is very variable in space and time; large enhancements occur for melting snow, but none for the melting graupel in embedded convection. Applying a bright band VPR correction to a region of embedded convection will lead to a severe underestimate of rainfall. We revive an earlier suggestion that high values of the linear depolarisation ratio (LDR) are an excellent means of detecting when bright band contamination is occurring and that the value of LDR may be used to correct the value of Z in the bright band.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential profile for a model of squid axon membrane has been determined for two physiological states: resting and action states. The non-linear Poisson-Boltzmann equation has been solved by considering the volumetric charge densities due to charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmatic proteins. Results showing the features of the potential profile along the outer electrolytic region are similar for both resting and action states. However, the potential fall along glycocalyx at action state is lower than at resting. A small variation in the Na+ concentration drastically affects the surface membrane potentials and vice versa. We conclude that effects on the potential profile due to surface lipidic bilayer charge and contiguous electric double layers are more relevant than those provoked by fixed charges distributed along the cell cytoplasm. (c) 2007 Elsevier B.V. All rights reserved.