974 resultados para Linear potential
Resumo:
The Dirac equation is solved for a pseudoscalar Coulomb potential in a two-dimensional world. An infinite sequence of bounded solutions are obtained. These results are in sharp contrast with those ones obtained in 3 + 1 dimensions where no bound-state solutions are found. Next the general two-dimensional problem for pseudoscalar power-law potentials is addressed consenting us to conclude that a nonsingular potential leads to bounded solutions. The behaviour of the upper and lower components of the Dirac spinor for a confining linear potential nonconserving- as well as conserving-parity, even if the potential is unbounded from below, is discussed in some detail. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Supersymmetric quantum mechanics can be used to obtain the spectrum and eigenstates of one-dimensional Hamiltonians. It is particularly useful when applied to partially solvable potentials because a superalgebra allows us to compute the spectrum state by state. Some solutions for the truncated Coulomb potential, an asymptotically linear potential, and a nonpolynomial potential are shown to exemplify the method.
Resumo:
Two oxazolidine-2-thiones, thio-analogs of linezolid, were synthesized and their antibacterial properties evaluated. Unlike oxazolidinones, the thio-analogs did not inhibit the growth of Gram positive bacteria. A molecular modeling study has been carried out to aid understanding of this unexpected finding.
Resumo:
The theory of phase formation is generalised for any arbitrary time dependence of nucleation and growth rates. Some sources of this time dependence are time-dependent potential inputs, ohmic drop and the ingestion effect. Particular cases, such as potentiostatic and, especially, linear potential sweep, are worked out for the two limiting cases of nucleation, namely instantaneous and progressive. The ohmic drop is discussed and a procedure for this correction is indicated. Recent results of Angerstein-Kozlowska, Conway and Klinger are critically investigated. Several earlier results are deduced as special cases. Evans' overlap formula is generalised for the time-dependent case and the equivalence between Avrami's and Evans' equations established.
Resumo:
A buoy as an offshore structure is often placed over a convex such as a caisson or a submerged island. The hydrodynamic fluid/solid interaction becomes more complex due to the convex compared with that on the flat. Both the buoy and the convex are idealized as vertical cylinders. Linear potential theory is used to investigate the response amplitude and the hydrodynamic force for a buoy over a convex due to diffraction and radiation in water of finite depth. These are derived from the total velocity potential. A set of theoretical added mass, damping coefficient, and exciting force expressions have been proposed. Analytical results of the response amplitude and hydrodynamic force are given. Finally, the numerical results show that the effect of the convex on the response amplitude and hydrodynamic force for the buoy is ignored if the size of the convex is relatively smaller.
Resumo:
The anodic voltammetric behavior of ethacridine (EAD) in the presence of various electrolytes was studied by using linear potential sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In the medium of 0.1 mol/L NaOH solution, an oxidative peak of ethaeridine was obtained. The peak potential is at about 0.40 V (vs. Ag/AgCl). The peak current is linearly increased with the concentration of ethaeridine over the range of 0.05 similar to 80 mg/L. The method has been used for the direct determination of ethacridine in injection. The relative standard deviation (n = 10) is 1.4% similar to 2.7%. The recoveries of ethacridine in urine samples are 89% similar to 95%. The mechanism of the electrode reaction was also discussed.
Resumo:
A new type of macro-micro-macro triple electrode has been fabricated, the steady-state currents of solution redox species have been observed at an ultramicroband electrode by linear potential scan voltammetry, and generation/collection experiments have al
Resumo:
This paper presents experimental and numerical studies into the hydrodynamic loading of a bottom-hinged large buoyant flap held rigidly upright in waves. Possible applications and limitations of physical experiments, a linear potential analytical method, a linear potential numerical method, a weakly non-linear tool and RANS CFD simulations are discussed. Different domains of applicability of these research techniques are highlighted considering the validity of underlying assumptions, complexity of application and feasibility in terms of resources like time and computing power needed to obtain results. Conclusions are drawn regarding the future extension of the numerical methods to the case of a moving flap.
Resumo:
In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in D=2 and D=3 dimensions. This is done through the computation of the effective action up to quadratic terms in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively in k/m, where k is the photon momentum and m the fermion mass. The poles of the propagators were determined numerically by using the MATHEMATICA software. In D=2 there is always a massless pole whereas for strong enough Thirring coupling a massive pole may appear. For D=3 there are three regions in parameter space. We may have one or two massive poles or even no pole at all. The interquark static potential is computed analytically in D=2. We notice that the Thirring interaction contributes with a screening term to the confining linear potential of massive two-dimensional QED (QED(2)). In D=3 the static potential must be calculated numerically. The screening nature of the massive QED(3) prevails at any distance, indicating that this is a universal feature of D=3 electromagnetic interaction. Our results become exact for an infinite number of fermion flavors.
Resumo:
The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
It is shown that the tight-binding approximation of the nonlinear Schrodinger equation with a periodic linear potential and periodic in space nonlinearity coefficient gives rise to a number of nonlinear lattices with complex, both linear and nonlinear, neighbor interactions. The obtained lattices present nonstandard possibilities, among which we mention a quasilinear regime, where the pulse dynamics obeys essentially the linear Schrodinger equation. We analyze the properties of such models both in connection to their modulational stability, as well as in regard to the existence and stability of their localized solitary wave solutions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)