958 resultados para Linear equations
Resumo:
This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.
Resumo:
In this paper, the calculation of the steady-state operation of a radial/meshed electrical distribution system (EDS) through solving a system of linear equations (non-iterative load flow) is presented. The constant power type demand of the EDS is modeled through linear approximations in terms of real and imaginary parts of the voltage taking into account the typical operating conditions of the EDS's. To illustrate the use of the proposed set of linear equations, a linear model for the optimal power flow with distributed generator is presented. Results using some test and real systems show the excellent performance of the proposed methodology when is compared with conventional methods. © 2011 IEEE.
Resumo:
"(This is being submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics, June 1959.)"
Resumo:
In this paper we propose a refinement of some successive overrelaxation methods based on the reverse Gauss–Seidel method for solving a system of linear equations Ax = b by the decomposition A = Tm − Em − Fm, where Tm is a banded matrix of bandwidth 2m + 1. We study the convergence of the methods and give software implementation of algorithms in Mathematica package with numerical examples. ACM Computing Classification System (1998): G.1.3.
Resumo:
A new parallel approach for solving a pentadiagonal linear system is presented. The parallel partition method for this system and the TW parallel partition method on a chain of P processors are introduced and discussed. The result of this algorithm is a reduced pentadiagonal linear system of order P \Gamma 2 compared with a system of order 2P \Gamma 2 for the parallel partition method. More importantly the new method involves only half the number of communications startups than the parallel partition method (and other standard parallel methods) and hence is a far more efficient parallel algorithm.
Resumo:
Solving indeterminate algebraic equations in integers is a classic topic in the mathematics curricula across grades. At the undergraduate level, the study of solutions of non-linear equations of this kind can be motivated by the use of technology. This article shows how the unity of geometric contextualization and spreadsheet-based amplification of this topic can provide a discovery experience for prospective secondary teachers and information technology students. Such experience can be extended to include a transition from a computationally driven conjecturing to a formal proof based on a number of simple yet useful techniques.
Resumo:
The non-linear equations of motion of a rotating blade undergoing extensional and flapwise bending vibration are derived, including non-linearities up to O (ε3). The strain-displacement relationship derived is compared with expressions derived by earlier investigators and the errors and the approximations made in some of those are brought out. The equations of motion are solved under the inextensionality condition to obtain the influence of the amplitude on the fundamental flapwise natural frequency of the rotating blade. It is found that large finite amplitudes have a softening effect on the flapwise frequency and that this influence becomes stronger at higher speeds of rotation.
Resumo:
The non-linear equations of motion of a rotating blade undergoing extensional and flapwise bending vibration are derived, including non-linearities up to O (ε3). The strain-displacement relationship derived is compared with expressions derived by earlier investigators and the errors and the approximations made in some of those are brought out. The equations of motion are solved under the inextensionality condition to obtain the influence of the amplitude on the fundamental flapwise natural frequency of the rotating blade. It is found that large finite amplitudes have a softening effect on the flapwise frequency and that this influence becomes stronger at higher speeds of rotation.
Resumo:
The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.
Resumo:
The Cole-Hopf transformation has been generalized to generate a large class of nonlinear parabolic and hyperbolic equations which are exactly linearizable. These include model equations of exchange processes and turbulence. The methods to solve the corresponding linear equations have also been indicated.La transformation de Cole et de Hopf a été généralisée en vue d'engendrer une classe d'équations nonlinéaires paraboliques et hyperboliques qui peuvent être rendues linéaires de façon exacte. Elles comprennent des équations modèles de procédés d'échange et de turbulence. Les méthodes pour résoudre les équations linéaires correspondantes ont également été indiquées.
Resumo:
An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.
Resumo:
On a characteristic surface Omega of a hyperbolic system of first-order equations in multi-dimensions (x, t), there exits a compatibility condition which is in the form of a transport equation along a bicharacteristic on Omega. This result can be interpreted also as a transport equation along rays of the wavefront Omega(t) in x-space associated with Omega. For a system of quasi-linear equations, the ray equations (which has two distinct parts) and the transport equation form a coupled system of underdetermined equations. As an example of this bicharacteristic formulation, we consider two-dimensional unsteady flow of an ideal magnetohydrodynamics gas with a plane aligned magnetic field. For any mode of propagation in this two-dimensional flow, there are three ray equations: two for the spatial coordinates x and y and one for the ray diffraction. In spite of little longer calculations, the final four equations (three ray equations and one transport equation) for the fast magneto-acoustic wave are simple and elegant and cannot be derived in these simple forms by use of a computer program like REDUCE.
Resumo:
Gauss and Fourier have together provided us with the essential techniques for symbolic computation with linear arithmetic constraints over the reals and the rationals. These variable elimination techniques for linear constraints have particular significance in the context of constraint logic programming languages that have been developed in recent years. Variable elimination in linear equations (Guassian Elimination) is a fundamental technique in computational linear algebra and is therefore quite familiar to most of us. Elimination in linear inequalities (Fourier Elimination), on the other hand, is intimately related to polyhedral theory and aspects of linear programming that are not quite as familiar. In addition, the high complexity of elimination in inequalities has forces the consideration of intricate specializations of Fourier's original method. The intent of this survey article is to acquaint the reader with these connections and developments. The latter part of the article dwells on the thesis that variable elimination in linear constraints over the reals extends quite naturally to constraints in certain discrete domains.
Resumo:
A unique code (called Hensel's code) is derived for a rational number by truncating its infinite p-adic expansion. The four basic arithmetic algorithms for these codes are described and their application to rational matrix computations is demonstrated by solving a system of linear equations exactly, using the Gaussian elimination procedure.
Resumo:
The classical Purcell's vector method, for the construction of solutions to dense systems of linear equations is extended to a flexible orthogonalisation procedure. Some properties are revealed of the orthogonalisation procedure in relation to the classical Gauss-Jordan elimination with or without pivoting. Additional properties that are not shared by the classical Gauss-Jordan elimination are exploited. Further properties related to distributed computing are discussed with applications to panel element equations in subsonic compressible aerodynamics. Using an orthogonalisation procedure within panel methods enables a functional decomposition of the sequential panel methods and leads to a two-level parallelism.