927 resultados para Limit theorems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classi cation: 60K25 (primary); 60F05, 37A50 (secondary)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60F17, 60G52, 60G70 secondary 60E07, 62E20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60J80, Secondary 60G99.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we study the one-dimensional random geometric (random interval) graph when the location of the nodes are independent and exponentially distributed. We derive exact results and limit theorems for the connectivity and other properties associated with this random graph. We show that the asymptotic properties of a graph with a truncated exponential distribution can be obtained using the exponential random geometric graph. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the slotted ALOHA protocol on a channel with a capture effect. There are M limit theorems. Our arrival streams contain all the traffic models suggested in the recent literature, including the ones which display long range dependence. We also obtain bounds on the stationary moments of waiting times which can be tight under realistic conditions. Finally, we obtain several results on the transient performance of the system, e.g., first time to overflow and the limits of the overflow process. We also extend the above results to the case of a capture channel exhibiting Markov modulated fading. Most of our results and proofs will be shown to hold also for the slotted ALOHA protocol without capture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results with respect to the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. Our results have important consequences for online parameter estimation for non-linear non-Gaussian state-space models. We show how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward only recursion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present for the first time a justification on the basis of central limit theorems for the family of life distributions generated from scale-mixture of normals. This family was proposed by Balakrishnan et al. (2009) and can be used to accommodate unexpected observations for the usual Birnbaum-Saunders distribution generated from the normal one. The class of scale-mixture of normals includes normal, slash, Student-t, logistic, double-exponential, exponential power and many other distributions. We present a model for the crack extensions where the limiting distribution of total crack extensions is in the class of scale-mixture of normals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fundamental question "Are sequential data random?" arises in myriad contexts, often with severe data length constraints. Furthermore, there is frequently a critical need to delineate nonrandom sequences in terms of closeness to randomness--e.g., to evaluate the efficacy of therapy in medicine. We address both these issues from a computable framework via a quantification of regularity. ApEn (approximate entropy), defining maximal randomness for sequences of arbitrary length, indicating the applicability to sequences as short as N = 5 points. An infinite sequence formulation of randomness is introduced that retains the operational (and computable) features of the finite case. In the infinite sequence setting, we indicate how the "foundational" definition of independence in probability theory, and the definition of normality in number theory, reduce to limit theorems without rates of convergence, from which we utilize ApEn to address rates of convergence (of a deficit from maximal randomness), refining the aforementioned concepts in a computationally essential manner. Representative applications among many are indicated to assess (i) random number generation output; (ii) well-shuffled arrangements; and (iii) (the quality of) bootstrap replicates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 62P05.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60J80.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60G51, secondary 60G70, 60F17.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The random walk models with temporal correlation (i.e. memory) are of interest in the study of anomalous diffusion phenomena. The random walk and its generalizations are of prominent place in the characterization of various physical, chemical and biological phenomena. The temporal correlation is an essential feature in anomalous diffusion models. These temporal long-range correlation models can be called non-Markovian models, otherwise, the short-range time correlation counterparts are Markovian ones. Within this context, we reviewed the existing models with temporal correlation, i.e. entire memory, the elephant walk model, or partial memory, alzheimer walk model and walk model with a gaussian memory with profile. It is noticed that these models shows superdiffusion with a Hurst exponent H > 1/2. We study in this work a superdiffusive random walk model with exponentially decaying memory. This seems to be a self-contradictory statement, since it is well known that random walks with exponentially decaying temporal correlations can be approximated arbitrarily well by Markov processes and that central limit theorems prohibit superdiffusion for Markovian walks with finite variance of step sizes. The solution to the apparent paradox is that the model is genuinely non-Markovian, due to a time-dependent decay constant associated with the exponential behavior. In the end, we discuss ideas for future investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers a stochastic SIR (susceptible-infective-removed) epidemic model in which individuals may make infectious contacts in two ways, both within 'households' (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically-motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly-sized finite populations. The extension to unequal sized households is discussed briefly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper represents the second part of a study of semi-geostrophic (SG) geophysical fluid dynamics. SG dynamics shares certain attractive properties with the better known and more widely used quasi-geostrophic (QG) model, but is also a good prototype for balanced models that are more accurate than QG dynamics. The development of such balanced models is an area of great current interest. The goal of the present work is to extend a central body of QG theory, concerning the evolution of disturbances to prescribed basic states, to SG dynamics. Part 1 was based on the pseudomomentum; Part 2 is based on the pseudoenergy. A pseudoenergy invariant is a conserved quantity, of second order in disturbance amplitude relative to a prescribed steady basic state, which is related to the time symmetry of the system. We derive such an invariant for the semi-geostrophic equations, and use it to obtain: (i) a linear stability theorem analogous to Arnol'd's ‘first theorem’; and (ii) a small-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit. The results are analogous to their quasi-geostrophic forms, and reduce to those forms in the limit of small Rossby number. The results are derived for both the f-plane Boussinesq form of semi-geostrophic dynamics, and its extension to β-plane compressible flow by Magnusdottir & Schubert. Novel features particular to semi-geostrophic dynamics include apparently unnoticed lateral boundary stability criteria. Unlike the boundary stability criteria found in the first part of this study, however, these boundary criteria do not necessarily preclude the construction of provably stable basic states. The interior semi-geostrophic dynamics has an underlying Hamiltonian structure, which guarantees that symmetries in the system correspond naturally to the system's invariants. This is an important motivation for the theoretical approach used in this study. The connection between symmetries and conservation laws is made explicit using Noether's theorem applied to the Eulerian form of the Hamiltonian description of the interior dynamics.