969 resultados para Lime. Polishing of porcelain residue. Mortar coating. Restoration
Resumo:
Dissertação para a obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
The present study was carried out to evaluate the effect of chitosan-based edible coatings with Aloe vera extract on the postharvest blueberry fruit quality during storage at 5 °C. Firstly, A. vera fractions (pulp and liquid) were extracted from leaves and evaluated in terms of antifungal and antioxidant capacities. The choice of the most adequate chitosan and A. vera fraction concentrations to be incorporated in coating formulation was made based on the wettability of the corresponding coating solutions. Coatings with 0.5% (w/v) chitosan + 0.5% (w/v) glycerol + 0.1% (w/v) Tween 80 + 0.5% (v/v) A. vera liquid fraction presented the best characteristics to uniformly coat blueberry surface. Physico-chemical (i.e., titratable acidity, pH, weight loss) and microbiological analyses of coated blueberries (non-inoculated or artificially inoculated with Botrytis cinerea) were performed during 25 d. Microbiological growth and water loss levels were approximately reduced by 50% and 42%, respectively, in coated blueberries after 25 d compared to uncoated blueberries. After 15 d, weight loss values were 6.2% and 3.7% for uncoated and chitosanA. vera coated blueberries, respectively. Uncoated fruits presented mold contamination after 2 d of storage (2.0 ± 0.32 log CFU g1), whilst fruits with chitosan-based coatings with A. vera presented mold contamination only after 9 d of storage (1.3 ± 0.35 log CFU g1). Overall, coatings developed in this study extend blueberries shelf-life for about 5 d, demonstrating for the first time that the combination of chitosan and A. vera liquid fraction as edible coating materials has great potential in expanding the shelf-life of fruits.
Resumo:
v.15:no.2(1917)
Resumo:
A study of the main types of coatings and its processes that modern industry commonly apply to prevent to the corrosion due to the environmental effects to energetic market pipelines have been done. Extracting main time and temperature range values, coating heat treatment recreation have been applied to x65 pipelines steel grade samples obtained from a pipe which was formed using UOE forming process. Experimental tensile tests and Charpy V‐Notch Impact test have been carried out for a deeply knowledge of the influence on the steel once this recreations are applied. The Yield Strength and toughness have been improved despite lower values in rupture strain and ductile‐brittle temperature transition have been obtained. Finite Element Method have been applied to simulate the entirely pipe cold bending process to predict the mechanical properties and behaviour of the pipe made from x65 steel grade under different conditions.
Resumo:
Lipids available in fingermark residue represent important targets for enhancement and dating techniques. While it is well known that lipid composition varies among fingermarks of the same donor (intra-variability) and between fingermarks of different donors (inter-variability), the extent of this variability remains uncharacterised. Thus, this worked aimed at studying qualitatively and quantitatively the initial lipid composition of fingermark residue of 25 different donors. Among the 104 detected lipids, 43 were reported for the first time in the literature. Furthermore, palmitic acid, squalene, cholesterol, myristyl myristate and myristyl myristoleate were quantified and their correlation within fingermark residue was highlighted. Ten compounds were then selected and further studied as potential targets for dating or enhancement techniques. It was shown that their relative standard deviation was significantly lower for the intra-variability than for the inter-variability. Moreover, the use of data pretreatments could significantly reduce this variability. Based on these observations, an objective donor classification model was proposed. Hierarchical cluster analysis was conducted on the pre-treated data and the fingermarks of the 25 donors were classified into two main groups, corresponding to "poor" and "rich" lipid donors. The robustness of this classification was tested using fingermark replicates of selected donors. 86% of these replicates were correctly classified, showing the potential of such a donor classification model for research purposes in order to select representative donors based on compounds of interest.
Resumo:
This article describes the composition of fingermark residue as being a complex system with numerous compounds coming from different sources and evolving over time from the initial composition (corresponding to the composition right after deposition) to the aged composition (corresponding to the evolution of the initial composition over time). This complex system will additionally vary due to effects of numerous influence factors grouped in five different classes: the donor characteristics, the deposition conditions, the substrate nature, the environmental conditions and the applied enhancement techniques. The initial and aged compositions as well as the influence factors are thus considered in this article to provide a qualitative and quantitative review of all compounds identified in fingermark residue up to now. The analytical techniques used to obtain these data are also enumerated. This review highlights the fact that despite the numerous analytical processes that have already been proposed and tested to elucidate fingermark composition, advanced knowledge is still missing. Thus, there is a real need to conduct future research on the composition of fingermark residue, focusing particularly on quantitative measurements, aging kinetics and effects of influence factors. The results of future research are particularly important for advances in fingermark enhancement and dating technique developments.
Resumo:
This article describes the composition of fingermark residue as being a complex system with numerous compounds coming from different sources and evolving over time from the initial composition (corresponding to the composition right after deposition) to the aged composition (corresponding to the evolution of the initial composition over time). This complex system will additionally vary due to effects of numerous influence factors grouped in five different classes: the donor characteristics, the deposition conditions, the substrate nature, the environmental conditions and the applied enhancement techniques. The initial and aged compositions as well as the influence factors are thus considered in this article to provide a qualitative and quantitative review of all compounds identified in fingermark residue up to now. The analytical techniques used to obtain these data are also enumerated. This review highlights the fact that despite the numerous analytical processes that have already been proposed and tested to elucidate fingermark composition, advanced knowledge is still missing. Thus, there is a real need to conduct future research on the composition of fingermark residue, focusing particularly on quantitative measurements, aging kinetics and effects of influence factors. The results of future research are particularly important for advances in fingermark enhancement and dating technique developments.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Swine residue (SR) applied as nutrient source of crops such as corn, bean, soybean and wheat, besides representing an environmental-friendly way of disposing of organic waste resulting from swine production, may significantly increase grain yields, replacing mineral fertilizer. The objective was to evaluate the effect of SR rates on corn, common bean, soybean and wheat yields from 2002 to 2007, in comparison with mineral fertilizer. The experiment was carried out at the Instituto Agronômico do Paraná - IAPAR, Pato Branco, PR and consisted of increasing SR rates (0, 15, 30, 45, and 60 m³ ha-1) and one treatment with mineral fertilizer (NPK 4-30-10), using 250 kg ha-1 for bean and 300 kg ha-1 for corn, soybean and wheat. Also, in the treatment with mineral fertilizer, 60, 120 and 90 kg ha-1 N was applied as topdressing to bean, corn and wheat, respectively. There were significant increases of grain yield in all evaluated years and crops with increasing SR rates, especially in the grass species under study. Also, with increasing SR rates applied every six months, K, P, Ca and Mg were accumulated in the soil and the pH increased. The application of 60 m³ ha-1 SR increased yields and exceeded the yield obtained with the recommended mineral fertilizer, indicating this amount as adequate for these crops.
Resumo:
The application of organic residues to the soil can increase soluble organic carbon (SOC) and affect the pH and electrolytic conductivity (EC) of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC), water-extractable organic carbon (WEOC), and water-extractable inorganic carbon (WEIC) in soil treated with manure (chicken, swine, and quail), sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4), organic carbon (OC- KH2PO4), and inorganic C (IC- KH2PO4) extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol) sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.
Resumo:
Well developed experimental procedures currently exist for retrieving and analyzing particle evidence from hands of individuals suspected of being associated with the discharge of a firearm. Although analytical approaches (e.g. automated Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDS) microanalysis) allow the determination of the presence of elements typically found in gunshot residue (GSR) particles, such analyses provide no information about a given particle's actual source. Possible origins for which scientists may need to account for are a primary exposure to the discharge of a firearm or a secondary transfer due to a contaminated environment. In order to approach such sources of uncertainty in the context of evidential assessment, this paper studies the construction and practical implementation of graphical probability models (i.e. Bayesian networks). These can assist forensic scientists in making the issue tractable within a probabilistic perspective. The proposed models focus on likelihood ratio calculations at various levels of detail as well as case pre-assessment.
Resumo:
Photocatalytic materials can minimize atmospheric pollution by decomposing certain organic and inorganic pollutants using sunlight as an energy source. In this paper, the development of a methodology to measure the photocatalytic potential of mortar containing TiO2 nanoparticles is reported. The results indicate that up to 40% of NOx can be degraded by Portland cement mortar containing 30-50% of TiO2, which validates the method developed for evaluating the photocatalytic potential of materials.
Resumo:
The analysis of species composition and its effects on sustainability restoration processes in the Atlantic Forest with poor environmental attributes is important to improve rehabilitation techniques for disturbed ecosystems. Reforestation projects were used as Biological Measures (BM) of rehabilitation, where treatments differ in the composition of exotic species, utilized as anthropic pioneers: BM1 - 82% (73% Mimosa caesalpiniifolia Benth, 9% Eucalyptus citriodora Hook.); BM2 - 91% (9%, 82%); and BM3 - 25% (15%, 10%). The monitoring of spontaneous regeneration was evaluated in three 12-year-old reforestation sites between thr rainy season of 2004 and 2005, and compared with an approximately 100-year-old native forest fragment and a grassland: ecosystems with inertial tendency toward recuperation and degradation, respectively. It was detected that exotic species used as anthropic pioneers strongly influenced regeneration: BM1 (75%), BM2 (85%), BM3 (55%), Forest (0%) and Grassland (50%). The highest similarity of species with forest regeneration (5%) was found for treatment BM3.
Resumo:
The objective of this research project was to study the drying of soymilk residue in a pneumatic flash dryer, using response Surface Methodology (RSM), and to evaluate the quality of the dried residue. Soymilk residue, also known as okara, was provided by a Brazilian soymilk factory. RSM showed that for a 120 second drying cycle, the lower the residue moisture contents (y) obtained, the higher the recirculation rates (x1), regardless of the air drying temperature (x2), and it could be expressed by the equation y = 7.072 - 7.92x1, with R² = 92,92%. It is possible to obtain okara with 10% of moisture (dwb) under the condition x1=1.25, equivalent to RR = 61%, with air drying temperatures ranging from 252 °C to 308 °C. The dried okara obtained through Central Compound Rotational Design (CCRD) presented a centesimal composition similar to the okara dried in a tray dryer, known as the original okara. There were significant variations (p < 0.05) in the Emulsifying Capacity (EC), Emulsion Stability (ES) and Protein Solubility (PS) between the dehydrated residues obtained. It was concluded that the flash drying of okara is technically feasible and that the physicochemical composition of the residue was not altered; on the contrary, the process promoted a positive effect on the technological functional properties.