999 resultados para Level Crossings
Resumo:
Collisions among trains and cars at road/rail level crossings (LXs) can have severe consequences such as high level of fatalities, injuries and significant financial losses. As communication and positioning technologies have significantly advanced, implementing vehicular ad hoc networks (VANETs) in the vicinity of unmanned LXs, generally LXs without barriers, is seen as an efficient and effective approach to mitigate or even eliminate collisions without imposing huge infrastructure costs. VANETs necessitate unique communication strategies, in which routing protocols take a prominent part in their scalability and overall performance, through finding optimised routes quickly and with low bandwidth overheads. This article studies a novel geo-multicast framework that incorporates a set of models for communication, message flow and geo-determination of endangered vehicles with a reliable receiver-based geo-multicast protocol to support cooperative level crossings (CLXs), which provide collision warnings to the endangered motorists facing road/rail LXs without barriers. This framework is designed and studied as part of a $5.5 m Government and industry funded project, entitled 'Intelligent-Transport-Systems to improve safety at road/rail crossings'. Combined simulation and experimental studies of the proposed geo-multicast framework have demonstrated promising outcomes as cooperative awareness messages provide actionable critical information to endangered drivers who are identified by CLXs.
Resumo:
There is a continuing need to improve safety at Railway Level Crossings (RLX) particularly those that do not have gates and lights regulating traffic flow. A number of Intelligent Transport System (ITS) interventions have been proposed to improve drivers’ awareness and reduce errors in detecting and responding appropriately at level crossings. However, as with other technologies, successful implementation and ultimately effectiveness rests with the acceptance of the technology by the end user. In the current research, four focus groups were held (n=38) with drivers in metropolitan and regional locations in Queensland to examine their perceptions of potential in-vehicle and road-based ITS interventions to improve safety at RLX. The findings imply that further development of the ITS interventions, in particular the design and related promotion of the final product, must consider ease of use, usefulness and relative cost.
Resumo:
• crashes at level crossings : pedestrians at higher risk • why pedestrian risky crossing lacks in understandng ? • systems approach – what benefits ? • what are the risk factors at play ? • focus group study: results and future implications
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.
Resumo:
The introduction of safety technologies into complex socio-technical systems requires an integrated and holistic approach to HF and engineering, considering the effects of failures not only within system boundaries, but also at the interfaces with other systems and humans. Level crossing warning devices are examples of such systems where technically safe states within the system boundary can influence road user performance, giving rise to other hazards that degrade safety of the system. Chris will discuss the challenges that have been encountered to date in developing a safety argument in support of low-cost level crossing warning devices. The design and failure modes of level crossing warning devices are known to have a significant influence on road user performance; however, quantifying this effect is one of the ongoing challenges in determining appropriate reliability and availability targets for low-cost level crossing warning devices.
Resumo:
Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.
Resumo:
Safety at railway level crossings (RLX) is one part of a wider picture of safety within the whole transport system. Governments, the rail industry and road organisations have used a variety of countermeasures for many years to improve RLX safety. New types of interventions are required in order to reduce the number of crashes and associated social costs at railway crossings. This paper presents the results of a large research program which aimed to assess the effectiveness of emerging Intelligent Transport Systems (ITS) interventions, both on-road and in-vehicle based, to improve the safety of car drivers at RLXs in Australia. The three most promising technologies selected from the literature review and focus groups were tested in an advanced driving simulator to provide a detailed assessment of their effects on driver behaviour. The three interventions were: (i) in-vehicle visual warning using a GPS/smartphone navigation-like system, (ii) in-vehicle audio warning and; (iii) on-road intervention known as valet system (warning lights on the road surface activated as a train approaches). The effects of these technologies on 57 participants were assessed in a systematic approach focusing on the safety of the intervention, effects on the road traffic around the crossings and driver’s acceptance of the technology. Given that the ITS interventions were likely to provide a benefit by improving the driver’s awareness of the crossing status in low visibility conditions, such conditions were investigated through curves in the track before arriving at the crossing. ITS interventions were also expected to improve driver behaviour at crossings with high traffic (blocking back issue), which were also investigated at active crossings. The key findings are: (i) interventions at passive crossings are likely to provide safety benefits; (ii) the benefits of ITS interventions on driver behaviour at active crossings are limited; (iii) the trialled ITS interventions did not show any issues in terms of driver distraction, driver acceptance or traffic delays; (iv) these interventions are easy to use, do not increase driver workload substantially; (v) participants’ intention to use the technology is high and; (vi) participants saw most value in succinct messages about approaching trains as opposed to knowing the RLX locations or the imminence of a collision with a train.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand the causal factors of these accidents, a video analytics application is being developed to automatically detect near-miss incidents using forward facing videos from trains. As near-miss events occur more frequently than collisions, by detecting these occurrences there will be more safety data available for analysis. The application that is being developed will improve the objectivity of near-miss reporting by providing quantitative data about the position of vehicles at level crossings through the automatic analysis of video footage. In this paper we present a novel method for detecting near-miss occurrences at railway level crossings from video data of trains. Our system detects and localizes vehicles at railway level crossings. It also detects the position of railways to calculate the distance of the detected vehicles to the railway centerline. The system logs the information about the position of the vehicles and railway centerline into a database for further analysis by the safety data recording and analysis system, to determine whether or not the event is a near-miss. We present preliminary results of our system on a dataset of videos taken from a train that passed through 14 railway level crossings. We demonstrate the robustness of our system by showing the results of our system on day and night videos.
Resumo:
A number of Intelligent Transportation Systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions namely, Video in-vehicle (ITS1), Audio in-vehicle (ITS2), and On-road flashing marker (ITS3) were tested. Then, the results from the driving simulator were used as inputs for a developed model using a traffic micro-simulation (Vissim 5.4) in order to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through a number of active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of driver behavior changing in terms of speed and compliance rate was greater at passive crossings than at active crossings. The difference in speed of drivers approaching ITS devices was very small which indicates that ITS helps drivers encounter the crossings in a safer way. Since the current traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varies based on different ITS safety devices, some modifications of the current traffic simulation were conducted. The results showed that exposure to ITS devices at active crossings did not influence the drivers’ behavior significantly according to the traffic performance indicators used, such as delay time, number of stops, speed, and stopped delay. On the other hand, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. Such systems, however, will only exert an influence on driving behaviour if they are accepted by the driver. This study aimed at assessing driver acceptance of different ITS interventions designed to enhance driver behaviour at railway crossings. Fifty eight participants, divided into three groups, took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver acceptance of each ITS intervention was assessed in a questionnaire guided by the Technology Acceptance Model and the Theory of Planned Behaviour. Overall, results indicated that the strongest intentions to use the ITS devices belonged to participants exposed to the road-based valet system at passive crossings. The utility of both models in explaining drivers’ intention to use the systems is discussed, with results showing greater support for the Theory of Planned Behaviour. Directions for future studies, along with strategies that target attitudes and subjective norms to increase drivers’ behavioural intentions, are also discussed.
Resumo:
The problem of collisions between road users and trains at rail level crossings (RLXs) remains resistant to current countermeasures. One factor underpinning these collisions is poor Situation Awareness (SA) on behalf of the road user involved (i.e. not being aware of an approaching train). Although this is a potential threat at any RLX, the factors influencing SA may differ depending on whether the RLX is located in a rural or urban road environment. Despite this, there has been no empirical investigation regarding how road user SA might differ across distinct RLX environments. This knowledge is needed to establish the extent to which a uniform approach to RLX design and safety is acceptable. The aim of this paper is to investigate the differences in driver SA at rural versus urban RLXs. We present analyses of driver SA in both rural and urban RLX environments based on two recent on-road studies undertaken in Victoria, Melbourne. The findings demonstrate that driver SA is markedly different at rural and urban RLXs, and also that poor SA regarding approaching trains may be caused by different factors. The implications for RLX design and safety are discussed.
Resumo:
Improving safety at railway level crossings is an important issue for the Australian transport system. Governments, the rail industry and road organisations have tried a variety of countermeasures for many years to improve railway level crossing safety. New types of Intelligent Transport System (ITS) interventions are now emerging due to the availability and the affordability of technology. These interventions target both actively and passively protected railway level crossings and attempt to address drivers’ errors at railway crossings, which are mainly a failure to detect the crossing or the train and misjudgement of the train approach speed and distance. This study aims to assess the effectiveness of three emerging ITS that the rail industry considers implementing in Australia: a visual in-vehicle ITS, an audio in-vehicle ITS, as well as an on-road flashing beacons intervention. The evaluation was conducted on an advanced driving simulator with 20 participants per trialled technology, each participant driving once without any technology and once with one of the ITS interventions. Every participant drove through a range of active and passive crossings with and without trains approaching. Their speed approach of the crossing, head movements and stopping compliance were measured. Results showed that driver behaviour was changed with the three ITS interventions at passive crossings, while limited effects were found at active crossings, even with reduced visibility. The on-road intervention trialled was unsuccessful in improving driver behaviour; the audio and visual ITS improved driver behaviour when a train was approaching. A trend toward worsening driver behaviour with the visual ITS was observed when no trains were approaching. This trend was not observed for the audio ITS intervention, which appears to be the ITS intervention with the highest potential for improving safety at passive crossings.
Resumo:
It is impracticable to upgrade the 18,900 Australian passive crossings as such crossings are often located in remote areas, where power is lacking and with low road and rail traffic. The rail industry is interested in developing innovative in-vehicle technology interventions to warn motorists of approaching trains directly in their vehicles. The objective of this study was therefore to evaluate the benefits of the introduction of such technology. We evaluated the changes in driver performance once the technology is enabled and functioning correctly, as well as the effects of an unsafe failure of the technology? We conducted a driving simulator study where participants (N=15) were familiarised with an in-vehicle audio warning for an extended period. After being familiarised with the system, the technology started failing, and we tested the reaction of drivers with a train approaching. This study has shown that with the traditional passive crossings with RX2 signage, the majority of drivers complied (70%) and looked for trains on both sides of the rail track. With the introduction of the in-vehicle audio message, drivers did not approach crossings faster, did not reduce their safety margins and did not reduce their gaze towards the rail tracks. However participants’ compliance at the stop sign decreased by 16.5% with the technology installed in the vehicle. The effect of the failure of the in-vehicle audio warning technology showed that most participants did not experience difficulties in detecting the approaching train even though they did not receive any warning message. This showed that participants were still actively looking for trains with the system in their vehicle. However, two participants did not stop and one decided to beat the train when they did not receive the audio message, suggesting potential human factors issues to be considered with such technology.
Resumo:
Crashes at level crossings are a major issue worldwide. In Australia, as well as in other countries, the number of crashes with vehicles has declined in the past years, while the number of crashes involving pedestrians seems to have remained unchanged. A systematic review of research related to pedestrian behaviour highlighted a number of important scientific gaps in current knowledge. The complexity of such intersections imposes particular constraints to the understanding of pedestrians’ crossing behaviour. A new systems-based framework, called Pedestrian Unsafe Level Crossing framework (PULC) was developed. The PULC organises contributing factors to crossing behaviour on different system levels as per the hierarchical classification of Jens Rasmussen’s Framework for Risk Management. In addition, the framework adapts James Reason’s classification to distinguish between different types of unsafe behaviour. The framework was developed as a tool for collection of generalizable data that could be used to predict current or future system failures or to identify aspects of the system that require further safety improvement. To give it an initial support, the PULC was applied to the analysis of qualitative data from focus groups discussions. A total number of 12 pedestrians who regularly crossed the same level crossing were asked about their daily experience and their observations of others’ behaviour which allowed the extraction and classification of factors associated with errors and violations. Two case studies using Rasmussen’s AcciMap technique are presented as an example of potential application of the framework. A discussion on the identified multiple risk contributing factors and their interactions is provided, in light of the benefits of applying a systems approach to the understanding of the origins of individual’s behaviour. Potential actions towards safety improvement are discussed.
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. However, such systems could overwhelm drivers, generate different types of driver errors and have negative effects on safety at level crossing. The literature shows an increasing interest for new ITS for increasing driver situational awareness at level crossings, as well as evaluations of such new systems on compliance. To our knowledge, the potential negative effects of such technologies have not been comprehensively evaluated yet. This study aimed at assessing the effect of different ITS interventions, designed to enhance driver behaviour at railway crossings, on driver’s cognitive loads. Fifty eight participants took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver cognitive load was objectively and subjectively assessed for each ITS intervention. Objective data were collected from a heart rate monitor and an eye tracker, while subjective data was collected with the NASA-TLX questionnaire. Overall, results indicated that the three trialled technologies did not result in significant changes in cognitive load while approaching crossings.