998 resultados para Leukemic cells
Resumo:
Kinetic investigations in pediatric acute lymphoblastic leukemia (ALL) are based on all blast cells and, therefore, reflect the proliferative characteristics of the predominant immunophenotype of leukemic cells. Nothing is known about proliferation of immunologically defined rare subpopulations of leukemic cells. In this study, mononuclear cells from the bone marrow of 15 children with untreated CD19 B-cell precursor ALL were examined for proliferative features according to the immunophenotype. After exclusion of highly proliferating residual normal hematopoietic cells, ∼ 3% of blast cells were CD19 and showed a low percentage of cells in S-phase assessed by the bromodeoxyuridine labeling index (BrdU-LI): median BrdU-LI, 0.19% [interquartile range (IQR), 0.15-0.40%]. In contrast, a median BrdU-LI of 7.2% (IQR, 5.7-8.8%) was found for the major CD19 blast cell compartment. Staining smears of sorted CD19 cells for CD10 or CD34 revealed a small fraction of CD19CD10 or CD19CD34 blast cells. These cells were almost nonproliferating with a median BrdU-LI of <0.1% (IQR, 0-0.2%). This proliferative behavior is suggestive of a stem/progenitor cell function and, in addition, the low proliferative activity might render them more resistant to an antiproliferation-based chemotherapy. However, xenotransplantation experiments will be necessary to demonstrate a possible stem cell function.
Resumo:
Under normal physiological conditions, cells of the hematopoietic system produce Interleukin-1$\beta$(IL-1$\beta)$ only when a stimulus is present. Leukemic cells, however, can constitutively produce this cytokine without an exogenous source of activation. In addition, IL-1$\beta$ can operate as an autocrine and/or paracrine growth factor for leukemic blasts. In order to study the cellular basis for this aberrant production, we analyzed two leukemic cell lines (B1 and W1) which express high levels of IL-1$\beta$ and use IL-1$\beta$ as an autocrine growth factor. Initial studies demonstrated: (1) lack of rearrangement and/or amplification in the IL-1$\beta$ gene and its promoter; and (2) intact responsiveness to regulators such as cycloheximide and dexamethasone, implying that the molecular defect was upstream. Analysis of the Ras inducible transcription factors by gel shift assay demonstrated constitutive transcription factor binding in the IL-1$\beta$ promoter. Furthermore, RAS mutations were found at codon 12 in the K-RAS and N-RAS genes in the B1 and W1 cells, respectively. To deduce the effects of activated Ras on IL-1$\beta$ expression, two classes of farnesyltransferase inhibitors and an adenoviral vector expressing antisense targeted to K-RAS were utilized. The farnesyltransferase inhibitors perillyl alcohol and B581 were able to reduce IL-1$\beta$ levels by 80% and 50% in the B1 cells, respectively. In W1 cells, IL-1$\beta$ was reduced by 60% with 1mM perillyl alcohol. Antisense RNA targeted to K-RAS confirmed the results demonstrating a 50% reduction in IL-1$\beta$ expression in the B1 cells. In addition, decreased binding at the crucial NF-IL6/CREB binding site correlated with decreased IL-1$\beta$ production and cellular proliferation implying that this site was a downstream effector of Ras signaling. Our data suggest that mutated RAS genes may be responsible for autocrine IL-1$\beta$ production in some leukemias by stimulating signal transduction pathways that activate the IL-1$\beta$ promoter. ^
Resumo:
In an mRNA profiling screen performed to unveil novel mechanisms of leukemogenesis, we found that the sentrin-specific protease 5 (SENP5) was significantly repressed in clinical acute myeloid leukemia when compared to healthy neutrophil samples. SENP5 is an enzyme that targets and cleaves small ubiquitin-like modifier (SUMO) residues from SUMOylated proteins. Further investigation with AML neutrophil differentiation cell models showed increased SENP5 expression upon induction of differentiation; in contrast, knocking down SENP5 resulted in significantly attenuated neutrophil differentiation. Our results support a new role of SENP5 in AML pathology, and in particular in the neutrophil differentiation of myeloid leukemic cells.
Resumo:
Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^
Resumo:
Human T cell leukemia/lymphotropic virus type I (HTLV-I) induces adult T cell leukemia/lymphoma (ATLL). The mechanism of HTLV-I oncogenesis in T cells remains partly elusive. In vitro, HTLV-I induces ligand-independent transformation of human CD4+ T cells, an event that correlates with acquisition of constitutive phosphorylation of Janus kinases (JAK) and signal transducers and activators of transcription (STAT) proteins. However, it is unclear whether the in vitro model of HTLV-I transformation has relevance to viral leukemogenesis in vivo. Here we tested the status of JAK/STAT phosphorylation and DNA-binding activity of STAT proteins in cell extracts of uncultured leukemic cells from 12 patients with ATLL by either DNA-binding assays, using DNA oligonucleotides specific for STAT-1 and STAT-3, STAT-5 and STAT-6 or, more directly, by immunoprecipitation and immunoblotting with anti-phosphotyrosine antibody for JAK and STAT proteins. Leukemic cells from 8 of 12 patients studied displayed constitutive DNA-binding activity of one or more STAT proteins, and the constitutive activation of the JAK/STAT pathway was found to persist over time in the 2 patients followed longitudinally. Furthermore, an association between JAK3 and STAT-1, STAT-3, and STAT-5 activation and cell-cycle progression was demonstrated by both propidium iodide staining and bromodeoxyuridine incorporation in cells of four patients tested. These results imply that JAK/STAT activation is associated with replication of leukemic cells and that therapeutic approaches aimed at JAK/STAT inhibition may be considered to halt neoplastic growth.
Resumo:
Patients with the M4Eo subtype of acute myeloid leukemia almost invariably are found to have an inversion of chromosome 16 in their leukemic cells, which results in a gene fusion between the transcription factor called core binding factor beta (CBFbeta) on 16q and a smooth muscle myosin heavy chain (SMMHC) gene on 16p. Subcellular localizations of the wild-type CBFbeta and the CBFbeta-SMMHC fusion protein were determined by immunofluorescence of NIH 3T3 cells that overexpress wild-type or fusion protein. Normal CBFbeta showed an unexpected perinuclear pattern consistent with primary localization in the Golgi complex. The CBFbeta-SMMHC fusion protein had a very different pattern. Nuclear staining included rod-like crystalline structures as long as 11 microm. The heterodimeric partner of CBFbeta, CBFalpha, formed part of this complex. Cytoplasmic staining included stress fibers that colocalized with actin, probably as a consequence of the myosin heavy chain component of the fusion protein. Deletion of different regions of the CBFbeta portion of the fusion protein showed that binding to CBFalpha was not required for nuclear translocation. However, deletion of parts of the SMMHC domain of the fusion protein involved in myosin-mediated filament formation resulted in proteins that did not form rod-like structures. These observations confirm previous indirect evidence that the CBFbeta-SMMHC fusion protein is capable of forming macromolecular nuclear aggregates and suggests possible models for the mechanism of leukemic transformation.
Resumo:
Purpose: To investigate the effect of Allium sativum (garlic) methanol extract on viability and apoptosis of human leukemic cells. Methods: Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay at concentrations of 3.125, 6.25, 12.5, 25, 50, 100, 200, 400 and 800 ug/mL of Allium sativum extract following 48-h treatment on U-937, Jurkat Clone E6-1 and K-562 cell lines. The mode of cell death was determined by Annexin V-FITC staining and analyzed by flow cytometry. Results: The results show that the half-maximal inhibitory concentration (IC50) of A. sativum on U-937, Jurkat Clone E6-1, K-562 cell lines was 105 ± 2.21, 489 ± 4.51 and 455 ± 3.13 μg/mL, respectively, compared with negative control, while apoptosis was 17.93 ± 0.95 % for U-937 cells (p ≤ 0.05), 38.37 ± 1.88 % for Jurkat Clone E6-1 cells (p ≤ 0.001) and 16.37 ± 1.10 % for K-562 cells. A majority of the cells were inhibited by the extract via apoptosis. Only U-937 cells (6.87 ± 0.65 %) showed significant necrosis compared to negative control (p ≤ 0.05). Conclusion: K-562 cells are the most resistant against garlic extract, in contrast to Jurkat Clone E6-1 cells. Garlic extract does not induce necrosis in Jurkat Clone E6-1 and K-562 cells.
Resumo:
This study proposes to investigate quercetin antitumor efficacy in vitro and in vivo, using the P39 cell line as a model. The experimental design comprised leukemic cells or xenografts of P39 cells, treated in vitro or in vivo, respectively, with quercetin; apoptosis, cell-cycle and autophagy activation were then evaluated. Quercetin caused pronounced apoptosis in P39 leukemia cells, followed by Bcl-2, Bcl-xL, Mcl-1 downregulation, Bax upregulation, and mitochondrial translocation, triggering cytochrome c release and caspases activation. Quercetin also induced the expression of FasL protein. Furthermore, our results demonstrated an antioxidant activity of quercetin. Quercetin treatment resulted in an increased cell arrest in G1 phase of the cell cycle, with pronounced decrease in CDK2, CDK6, cyclin D, cyclin E, and cyclin A proteins, decreased Rb phosphorylation and increased p21 and p27 expression. Quercetin induced autophagosome formation in the P39 cell line. Autophagy inhibition induced by quercetin with chloroquine triggered apoptosis but did not alter quercetin modulation in the G1 phase. P39 cell treatment with a combination of quercetin and selective inhibitors of ERK1/2 and/or JNK (PD184352 or SP600125, respectively), significantly decreased cells in G1 phase, this treatment, however, did not change the apoptotic cell number. Furthermore, in vivo administration of quercetin significantly reduced tumor volume in P39 xenografts and confirmed in vitro results regarding apoptosis, autophagy, and cell-cycle arrest. The antitumor activity of quercetin both in vitro and in vivo revealed in this study, point to quercetin as an attractive antitumor agent for hematologic malignancies.
Resumo:
Purpose: Use of lipid nanoemulsions as carriers of drugs for therapeutic or diagnostic purposes has been increasingly studied. Here, it was tested whether modifications of core particle constitution could affect the characteristics and biologic properties of lipid nanoemulsions. Methods: Three nanoemulsions were prepared using cholesteryl oleate, cholesteryl stearate, or cholesteryl linoleate as main core constituents. Particle size, stability, pH, peroxidation of the nanoemulsions, and cell survival and uptake by different cell lines were evaluated. Results: It was shown that cholesteryl stearate nanoemulsions had the greatest particle size and all three nanoemulsions were stable during the 237-day observation period. The pH of the three nanoemulsion preparations tended to decrease over time, but the decrease in pH of cholesteryl stearate was smaller than that of cholesteryl oleate and cholesteryl linoleate. Lipoperoxidation was greater in cholesteryl linoleate than in cholesteryl oleate and cholesteryl stearate. After four hours' incubation of human umbilical vein endothelial cells (HUVEC) with nanoemulsions, peroxidation was minimal in the presence of cholesteryl oleate and more pronounced with cholesteryl linoleate and cholesteryl stearate. In contrast, macrophage incubates showed the highest peroxidation rates with cholesteryl oleate. Cholesteryl linoleate induced the highest cell peroxidation rates, except in macrophages. Uptake of cholesteryl oleate nanoemulsion by HUVEC and fibroblasts was greater than that of cholesteryl linoleate and cholesteryl stearate. Uptake of the three nanoemulsions by monocytes was equal. Uptake of cholesteryl oleate and cholesteryl linoleate by macrophages was negligible, but macrophage uptake of cholesteryl stearate was higher. In H292 tumor cells, cholesteryl oleate showed the highest uptakes. HUVEC showed higher survival rates when incubated with cholesteryl stearate and smaller survival with cholesteryl linoleate. H292 survival was greater with cholesteryl stearate. Conclusion: Although all three nanoemulsion types were stable for a long period, considerable differences were observed in size, oxidation status, and cell survival and nanoemulsion uptake in all tested cell lines. Those differences may be helpful in protocol planning and interpretation of data from experiments with lipid nanoemulsions.
Resumo:
Acute promyelocytic leukemia (APL) is characterized by a block in differentiation and accumulation of promyelocytes in the bone marrow and blood. The majority of APL patients harbor the t(15: 17) translocation leading to expression of the fusion protein promyelocytic-retinoic acid receptor alpha. Treatment with retinoic acid leads to degradation of promyelocytic-retinoic acid receptor alpha protein and disappearance of leukemic cells; however, 30% of APL patients relapse after treatment. One potential mechanism for relapse is the persistence of cancer ""stem"" cells in hematopoietic organs after treatment. Using a novel sorting strategy we developed to isolate murine myeloid cells at distinct stages of differentiation, we identified a population of committed myeloid cells (CD34(+), c-kit(+), Fc gamma RIII/II(+), Gr1(int)) that accumulates in the spleen and bone marrow in a murine model of APL. We observed that these cells are capable of efficiently generating leukemia in recipient mice, demonstrating that this population represents the APL cancer-initiating cell. These cells down-regulate the transcription factor CCAAT/enhancer binding protein alpha (C/EBP alpha) possibly through a methylation-dependent mechanism, indicating that C/EBP alpha deregulation contributes to transformation of APL cancer-initiating cells. Our findings provide further understanding of the biology of APL by demonstrating that a committed transformed progenitor can initiate and propagate the disease. (Blood. 2009; 114: 5415-5425)
Resumo:
Background: Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.Methodology/Principal Findings: Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.Conclusion: Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.
Resumo:
Cytogenic analysis of leukemic cells has proven to be a mandatory part of the diagnosis of malignant hemopathies. Recurring clonal cytogenetic abnormalities may be divided into those exclusively associated with myeloid disorders, those uniquely observed in lymphoid diseases, and those detected in both myeloid and lymphoid hemopathies. Several of the common defects are characteristic of specific FAB types or subtypes and are associated with specific clinico pathologic syndromes and clinical complications. Cytogenetic abnormalities have served to define relatively homogeneous subsets of malignant hemopathies which are not evident from morphological and other available markers. Cytogenetic findings have been demonstrated to be powerful indicators in predicting clinical course and outcome in patients and in guiding their management. Given the significant progress made in the treatment of malignant hemopathies, it is very important to identify parameters which may be used to predict whether patients will respond favorably to standard therapies or if they are unlikely to do so and require alternative strategies, such as bone marrow transplantation. Cytogenetic studies have also provided important insights into the understanding of malignant transformation processes. In a number of recurring chromosome translocations characteristic of leukemias and lymphomas the genes that are located at the breakpoints have been identified. Molecular analysis has revealed that alteration in expression of these genes or in the properties of the encoded proteins resulting from the rearrangements plays an integral part in malignant transformation. Studies of clonality have suggested that several chromosome abnormalities may arise in pluripotent hemopoietic stem cells, whereas others may originate in cells of more restricted lineage. The author focuses first on the implications of the karyotype in the diagnosis and the prognosis of myeloproliferative syndromes, acute leukemias and myelodysplastic syndromes, then on the interest of describing new clinical-cytogenetic associations. Finally, some of the recent results obtained in a cytogenetic study of myelodysplastic syndromes are discussed.
Resumo:
To improve the yield of the cytogenetic analysis in patients with acute nonlymphocytic leukemia (ANLL), six culture conditions for bone marrow or peripheral blood cells were tested in parallel. Two conditioned media (CM), phytohemagglutinin leukocyte PHA-LCM and 5637 CM, nutritive elements (NE), and methotrexate (MTX) cell synchronization were investigated in 14 patients presenting with either inv(16)/ t(16;16) (group 1, n = 9 patients) or t(15;17) (group 2, n = 5). The criteria used to identify the most favorable culture conditions were the mitotic index (MI), the morphological index (MorI), and the percentage of abnormal metaphases. In the presence of PHA-LCM and 5637 CM, the MI were significantly increased in group 2, whereas in the MTX conditions, MI remained very low in both groups. The values of the MorI did not reveal any significant changes in chromosome resolution between the conditions in either group. The addition of NE did not have a positive effect in quantity or quality of metaphases. Because of the variability of the response of leukemic cells to different stimulations in vitro, several culture conditions in parallel are required to ensure a satisfactory yield of the chromosome analysis in ANLL.
Resumo:
We have designed and validated a novel generic platform for production of tetravalent IgG1-like chimeric bispecific Abs. The VH-CH1-hinge domains of mAb2 are fused through a peptidic linker to the N terminus of mAb1 H chain, and paired mutations at the CH1-CL interface mAb1 are introduced that force the correct pairing of the two different free L chains. Two different sets of these CH1-CL interface mutations, called CR3 and MUT4, were designed and tested, and prototypic bispecific Abs directed against CD5 and HLA-DR were produced (CD5xDR). Two different hinge sequences between mAb1 and mAb2 were also tested in the CD5xDR-CR3 or -MUT4 background, leading to bispecific Ab (BsAbs) with a more rigid or flexible structure. All four Abs produced bound with good specificity and affinity to CD5 and HLA-DR present either on the same target or on different cells. Indeed, the BsAbs were able to efficiently redirect killing of HLA-DR(+) leukemic cells by human CD5(+) cytokine-induced killer T cells. Finally, all BsAbs had a functional Fc, as shown by their capacity to activate human complement and NK cells and to mediate phagocytosis. CD5xDR-CR3 was chosen as the best format because it had overall the highest functional activity and was very stable in vitro in both neutral buffer and in serum. In vivo, CD5xDR-CR3 was shown to have significant therapeutic activity in a xenograft model of human leukemia.
Resumo:
Acute leukemia is the most frequent cancer in children. Recently, a new hypothesis was proposed for the pathogenesis of childhood acute lymphoblastic leukemia (ALL). The so-called "adrenal hypothesis" emphasized the role of endogenous cortisol in the etiology of B-cell precursor ALL. The incidence peak of ALL in children between 3 to 5 years of age has been well documented and is consistent with this view. The adrenal hypothesis proposes that the risk of childhood B-cell precursor ALL is reduced when early childhood infections induce qualitative and quantitative changes in the hypothalamus-pituitary-adrenal axis. It suggests that the increased plasma cortisol levels would be sufficient to eliminate all clonal leukemic cells originating during fetal life. Because Brazil is a continental and tropical country, the exposure to infections is diversified with endemic viral and regionally non-viral infections, with some characteristics that support the recent adrenal hypothesis. Here we discuss this new hypothesis in terms of data from epidemiological studies and the possible implications of the diversity of infections occurring in Brazilian children.