957 resultados para Leukemia, Myelogenous, Chronic, BCR-ABL Positive -- genetics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Philadelphia chromosome (Ph)-positive chronic myeloid leukemia is caused by a clonal myeloproliferative expansion of malignant primitive hematopoietic progenitor cells. The Ph results from the reciprocal translocation of the ends of chromosome 9 and 22, which generate Bcr-Abl fusion proteins. The Bcr-Abl proteins possess a constitutively activated Abl tyrosine kinase, which is the driving force responsible for causing leukemia. The activated Bcr-Abl tyrosine kinase stimulates multiple signal transduction pathway affecting growth, differentiation and survival of cells. It is known that the Bcr-Abl tyrosine kinase activates several signaling proteins including Stat5, which is a member of the Jak/Stat pathway that is activated by cytokines that control the growth and differentiation of normal hematopoietic cells. Our laboratory was the first one to report that Jak2 tyrosine kinase is activated in a human Bcr-Abl positive hematopoietic cell line. In this thesis, we further investigated the activation of Jak2 by Bcr-Abl. We found that Jak2 is activated not only in cultured Bcr-abl positive cell lines but also in blood cells from CML blast crisis patients. We also demonstrated that SH2 domain of Bcr-Abl is required for efficient activation Jak2. We further showed that Jak2 binds to the C-terminal domain of Bcr-Abl; tyrosine residue 1007, which is critical for Jak2 activation, is phosphorylated by Bcr-Abl. We searched downstream targets of Jak2 in Bcr-Abl positive cells. We treated Bcr-Abl positive cells with a Jak2 kinase inhibitor AG490 and found that c-Myc protein expression is inhibited by AG490. We further demonstrated that Jak2 inhibitor AG490 not only inhibit C-MYC transcription but also protect c-Myc protein from proteasome-dependent degradation. We also showed that AG490 did not affect Bcr-Abl kinase activity and Stat5 activation and its downstream target Bcl-xL expression. AG490 also induced apoptosis of Bcr-Abl positive cells, similar to Bcr-Abl kinase inhibitor STI571 (also termed Gliveec, a very effective drug for CML), but unlike STI571 the apoptosis effects induced by AG490 can not be rescued by IL-3 containing WEHI conditioned medium. We further established several Bcr-Abl positive clones that express a kinase-inactive Jak2 and found that these clones had reduced tumor formation in nude mice assays. Taken together, these results establish that Jak2 is activated in Bcr-Abl positive CML cells and it is required for c-Myc induction and the oncogenic effects of Bcr-Abl. Furthermore, Jak2 and Stat5 are two independent targets of Bcr-Abl. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular monitoring of BCR/ABL transcripts by real time quantitative reverse transcription PCR (qRT-PCR) is an essential technique for clinical management of patients with BCR/ABL-positive CML and ALL. Though quantitative BCR/ABL assays are performed in hundreds of laboratories worldwide, results among these laboratories cannot be reliably compared due to heterogeneity in test methods, data analysis, reporting, and lack of quantitative standards. Recent efforts towards standardization have been limited in scope. Aliquots of RNA were sent to clinical test centers worldwide in order to evaluate methods and reporting for e1a2, b2a2, and b3a2 transcript levels using their own qRT-PCR assays. Total RNA was isolated from tissue culture cells that expressed each of the different BCR/ABL transcripts. Serial log dilutions were prepared, ranging from 100 to 10-5, in RNA isolated from HL60 cells. Laboratories performed 5 independent qRT-PCR reactions for each sample type at each dilution. In addition, 15 qRT-PCR reactions of the 10-3 b3a2 RNA dilution were run to assess reproducibility within and between laboratories. Participants were asked to run the samples following their standard protocols and to report cycle threshold (Ct), quantitative values for BCR/ABL and housekeeping genes, and ratios of BCR/ABL to housekeeping genes for each sample RNA. Thirty-seven (n=37) participants have submitted qRT-PCR results for analysis (36, 37, and 34 labs generated data for b2a2, b3a2, and e1a2, respectively). The limit of detection for this study was defined as the lowest dilution that a Ct value could be detected for all 5 replicates. For b2a2, 15, 16, 4, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. For b3a2, 20, 13, and 4 labs showed a limit of detection at the 10-5, 10-4, and 10-3 dilutions, respectively. For e1a2, 10, 21, 2, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. Log %BCR/ABL ratio values provided a method for comparing results between the different laboratories for each BCR/ABL dilution series. Linear regression analysis revealed concordance among the majority of participant data over the 10-1 to 10-4 dilutions. The overall slope values showed comparable results among the majority of b2a2 (mean=0.939; median=0.9627; range (0.399 - 1.1872)), b3a2 (mean=0.925; median=0.922; range (0.625 - 1.140)), and e1a2 (mean=0.897; median=0.909; range (0.5174 - 1.138)) laboratory results (Fig. 1-3)). Thirty-four (n=34) out of the 37 laboratories reported Ct values for all 15 replicates and only those with a complete data set were included in the inter-lab calculations. Eleven laboratories either did not report their copy number data or used other reporting units such as nanograms or cell numbers; therefore, only 26 laboratories were included in the overall analysis of copy numbers. The median copy number was 348.4, with a range from 15.6 to 547,000 copies (approximately a 4.5 log difference); the median intra-lab %CV was 19.2% with a range from 4.2% to 82.6%. While our international performance evaluation using serially diluted RNA samples has reinforced the fact that heterogeneity exists among clinical laboratories, it has also demonstrated that performance within a laboratory is overall very consistent. Accordingly, the availability of defined BCR/ABL RNAs may facilitate the validation of all phases of quantitative BCR/ABL analysis and may be extremely useful as a tool for monitoring assay performance. Ongoing analyses of these materials, along with the development of additional control materials, may solidify consensus around their application in routine laboratory testing and possible integration in worldwide efforts to standardize quantitative BCR/ABL testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular monitoring of BCR/ABL transcripts by real time quantitative reverse transcription PCR (qRT-PCR) is an essential technique for clinical management of patients with BCR/ABL-positive CML and ALL. Though quantitative BCR/ABL assays are performed in hundreds of laboratories worldwide, results among these laboratories cannot be reliably compared due to heterogeneity in test methods, data analysis, reporting, and lack of quantitative standards. Recent efforts towards standardization have been limited in scope. Aliquots of RNA were sent to clinical test centers worldwide in order to evaluate methods and reporting for e1a2, b2a2, and b3a2 transcript levels using their own qRT-PCR assays. Total RNA was isolated from tissue culture cells that expressed each of the different BCR/ABL transcripts. Serial log dilutions were prepared, ranging from 100 to 10-5, in RNA isolated from HL60 cells. Laboratories performed 5 independent qRT-PCR reactions for each sample type at each dilution. In addition, 15 qRT-PCR reactions of the 10-3 b3a2 RNA dilution were run to assess reproducibility within and between laboratories. Participants were asked to run the samples following their standard protocols and to report cycle threshold (Ct), quantitative values for BCR/ABL and housekeeping genes, and ratios of BCR/ABL to housekeeping genes for each sample RNA. Thirty-seven (n=37) participants have submitted qRT-PCR results for analysis (36, 37, and 34 labs generated data for b2a2, b3a2, and e1a2, respectively). The limit of detection for this study was defined as the lowest dilution that a Ct value could be detected for all 5 replicates. For b2a2, 15, 16, 4, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. For b3a2, 20, 13, and 4 labs showed a limit of detection at the 10-5, 10-4, and 10-3 dilutions, respectively. For e1a2, 10, 21, 2, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. Log %BCR/ABL ratio values provided a method for comparing results between the different laboratories for each BCR/ABL dilution series. Linear regression analysis revealed concordance among the majority of participant data over the 10-1 to 10-4 dilutions. The overall slope values showed comparable results among the majority of b2a2 (mean=0.939; median=0.9627; range (0.399 - 1.1872)), b3a2 (mean=0.925; median=0.922; range (0.625 - 1.140)), and e1a2 (mean=0.897; median=0.909; range (0.5174 - 1.138)) laboratory results (Fig. 1-3)). Thirty-four (n=34) out of the 37 laboratories reported Ct values for all 15 replicates and only those with a complete data set were included in the inter-lab calculations. Eleven laboratories either did not report their copy number data or used other reporting units such as nanograms or cell numbers; therefore, only 26 laboratories were included in the overall analysis of copy numbers. The median copy number was 348.4, with a range from 15.6 to 547,000 copies (approximately a 4.5 log difference); the median intra-lab %CV was 19.2% with a range from 4.2% to 82.6%. While our international performance evaluation using serially diluted RNA samples has reinforced the fact that heterogeneity exists among clinical laboratories, it has also demonstrated that performance within a laboratory is overall very consistent. Accordingly, the availability of defined BCR/ABL RNAs may facilitate the validation of all phases of quantitative BCR/ABL analysis and may be extremely useful as a tool for monitoring assay performance. Ongoing analyses of these materials, along with the development of additional control materials, may solidify consensus around their application in routine laboratory testing and possible integration in worldwide efforts to standardize quantitative BCR/ABL testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β1-integrin engagement on normal (NL) CD34+ cells increases levels of the cyclin-dependent kinase inhibitor (cdki), p27Kip, decreases cdk2 activity, and inhibits G1/S-phase progression. In contrast, β1-integrin engagement on chronic myelogenous leukemia (CML) CD34+ cells does not inhibit G1/S progression. We now show that, in CML, baseline p27Kip levels are significantly higher than in NL CD34+ cells, but adhesion to fibronectin (FN) does not increase p27Kip levels. p27Kip mRNA levels are similar in CML and NL CD34+ cells and remain unchanged after adhesion, suggesting posttranscriptional regulation. Despite the elevated p27Kip levels, cdk2 kinase activity is similar in CML and NL CD34+ cells. In NL CD34+ cells, >90% of p27Kip is located in the nucleus, where it binds to cdk2 after integrin engagement. In CML CD34+ cells, however, >80% of p27Kip is located in the cytoplasm even in FN-adherent cells, and significantly less p27Kip is bound to cdk2. Thus, presence of BCR/ABL induces elevated levels of p27Kip and relocation of p27Kip to the cytoplasm, which contributes to the loss of integrin-mediated proliferation inhibition, characteristic of CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow is a heterogeneous cell population which includes hematopoietic and mesenchymal progenitor cells. Dysregulated hematopoiesis occurs in chronic myelogenous leukemia (CML), being caused at least in part by abnormalities in the hematopoietic progenitors. However, the role of mesenchymal stem cells (MSCs) in CML has not been well characterized. The objectives of the present study were to observe the biological characteristics of MSCs from CML patients and to determine if MSCs originate in part from donors in CML patients after bone marrow transplantation (BMT). We analyzed MSCs from 5 untreated patients and from 3 CML patients after sex-mismatched allogeneic BMT. Flow cytometry analysis revealed the typical MSC phenotype and in vitro assays showed ability to differentiate into adipocytes and osteoblasts. Moreover, although some RT-PCR data were contradictory, combined fluorescence in situ hybridization analysis showed that MSCs from CML patients do not express the bcr-abl gene. Regarding MSCs of donor origin, although it is possible to detect Y target sequence by nested PCR, the low frequency (0.14 and 0.34%) of XY cells in 2 MSC CML patients by fluorescence in situ hybridization analysis suggests the presence of contaminant hematopoietic cells and the absence of host-derived MSCs in CML patients. Therefore, we conclude that MSCs from CML patients express the typical MSC phenotype, can differentiate into osteogenic and adipogenic lineages and do not express the bcr-abl gene. MSCs cannot be found in recipients 12 to 20 months after BMT. The influence of MSCs on the dysregulation of hematopoiesis in CML patients deserves further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The monitoring of BCR-ABL transcript levels by real-time quantitative polymerase chain reaction (RT-qPCR) has become important to assess minimal residual disease (MRD) and standard of care in the treatment of chronic myeloid leukemia (CML). In this study, we performed a prospective, sequential analysis using RT-qPCR monitoring of BCR-ABL gene rearrangements in blood samples from 91 CML patients in chronic phase (CP) who achieved complete cytogenetic remission (CCyR) and major molecular remission (MMR) throughout imatinib treatment. Methods The absolute level of BCR-ABL transcript from peripheral blood was serially measured every 4 to 12 weeks by RT-qPCR. Only level variations > 0.5%, according to the international scale, was considered positive. Sequential cytogenetic analysis was also performed in bone marrow samples from all patients using standard protocols. Results Based on sequential analysis of BCR-ABL transcripts, the 91 patients were divided into three categories: (A) 57 (62.6%) had no variation on sequential analysis; (B) 30 (32.9%) had a single positive variation result obtained in a single sample; and (C) 4 (4.39%) had variations of BCR-ABL transcripts in at least two consecutive samples. Of the 34 patients who had elevated levels of transcripts (group B and C), 19 (55.8%) had a < 1% of BCR-ABL/BCR ratio, 13 (38.2%) patients had a 1% to 10% increase and 2 patients had a >10% increase of RT-qPCR. The last two patients had lost a CCyR, and none of them showed mutations in the ABL gene. Transient cytogenetic alterations in Ph-negative cells were observed in five (5.5%) patients, and none of whom lost CCyR. Conclusions Despite an increase levels of BCR-ABL/BCR ratio variations by RT-qPCR, the majority of CML patients with MMR remained in CCyR. Thus, such single variations should neither be considered predictive of subsequent failure and nor an indication for altering imatinib dose or switching to second generation therapy. Changing of imatinib on the basis of BCR-ABL/BCR% sustained increase and mutational studies is a prudent approach for preserving other therapeutic options in imatinib-resistant patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia patients resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL kinase domain mutation status is an essential component of the therapeutic decision algorithm. The recent development of Ultra-Deep Sequencing approach (UDS) has opened the way to a more accurate characterization of the mutant clones surviving TKIs conjugating assay sensitivity and throughput. We decided to set-up and validated an UDS-based for BCR-ABL KD mutation screening in order to i) resolve qualitatively and quantitatively the complexity and the clonal structure of mutated populations surviving TKIs, ii) study the dynamic of expansion of mutated clones in relation to TKIs therapy, iii) assess whether UDS may allow more sensitive detection of emerging clones, harboring critical 2GTKIs-resistant mutations predicting for an impending relapse, earlier than SS. UDS was performed on a Roche GS Junior instrument, according to an amplicon sequencing design and protocol set up and validated in the framework of the IRON-II (Interlaboratory Robustness of Next-Generation Sequencing) International consortium.Samples from CML and Ph+ ALL patients who had developed resistance to one or multiple TKIs and collected at regular time-points during treatment were selected for this study. Our results indicate the technical feasibility, accuracy and robustness of our UDS-based BCR-ABL KD mutation screening approach. UDS was found to provide a more accurate picture of BCR-ABL KD mutation status, both in terms of presence/absence of mutations and in terms of clonal complexity and showed that BCR-ABL KD mutations detected by SS are only the “tip of iceberg”. In addition UDS may reliably pick 2GTKIs-resistant mutations earlier than SS in a significantly greater proportion of patients.The enhanced sensitivity as well as the possibility to identify low level mutations point the UDS-based approach as an ideal alternative to conventional sequencing for BCR-ABL KD mutation screening in TKIs-resistant Ph+ leukemia patients

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED Early assessment of response at 3 months of tyrosine kinase inhibitor treatment has become an important tool to predict favorable outcome. We sought to investigate the impact of relative changes of BCR-ABL transcript levels within the initial 3 months of therapy. In order to achieve accurate data for high BCR-ABL levels at diagnosis, beta glucuronidase (GUS) was used as a reference gene. Within the German CML-Study IV, samples of 408 imatinib-treated patients were available in a single laboratory for both times, diagnosis and 3 months on treatment. In total, 301 of these were treatment-naïve at sample collection. RESULTS (i) with regard to absolute transcript levels at diagnosis, no predictive cutoff could be identified; (ii) at 3 months, an individual reduction of BCR-ABL transcripts to the 0.35-fold of baseline level (0.46-log reduction, that is, roughly half-log) separated best (high risk: 16% of patients, 5-year overall survival (OS) 83% vs 98%, hazard ratio (HR) 6.3, P=0.001); (iii) at 3 months, a 6% BCR-ABL(IS) cutoff derived from BCR-ABL/GUS yielded a good and sensitive discrimination (high risk: 22% of patients, 5-year OS 85% vs 98%, HR 6.1, P=0.002). Patients at risk of disease progression can be identified precisely by the lack of a half-log reduction of BCR-ABL transcripts at 3 months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML), a myeloproliferative disorder, represents approximately 15-20% of all adult leukemia. The development of CML is clearly linked to the constitutively active protein-tyrosine kinase BCR-ABL, which is encoded by BCR-ABL fusion gene as the result of chromosome 9/22 translocation (Philadelphia chromosome). Previous studies have demonstrated that oxidative stress-associated genetic, metabolic and biological alterations contribute to CML cell survival and drug refractory. Mitochondria and NAD(P)H oxidase (NOX) are the major sources of BCR-ABL-induced cellular reactive oxygen species (ROS) production. However, it is still unknown how CML cells maintain the altered redox status, while escaping from the persistent oxidative stress-induced cell death. Therefore, elucidation of the mechanisms by which CML cells cope with oxidative stress will provide new insights into CML leukemogenesis. The major goal of this study is to identify the survival factors protecting CML cells against oxidative stress and develop novel therapeutic strategies to overcome drug resistance. Several experimental models were used to test CML cell redox status and cellular sensitivity to oxidative stress, including BCR-ABL inducible cell lines, BCR-ABL stably transformed cell lines and BCR-ABL-expressing CML blast crisis cells with differential BCL-XL/BCL-2 expressions. Additionally, an artificial CML cell model with heterogenic BCL-XL/BCL-2 expression was established to assess the correlation between differential survival factor expression patterns and cell sensitivity to Imatinib and oxidative stress. In this study, BCL-XL and GSH have been identified as the major survival factors responsive to BCR-ABL-promoted cellular oxidative stress and play a dominant role in regulating the threshold of oxidative stress-induced apoptosis. Cell survival factors BCL-XL and BCL-2 differentially protect mitochondria under oxidative stress. BCL-XL is an essential survival factor in preventing excessive ROS-induced cell death while BCL-2 seems to play a relatively minor role. Furthermore, the redox modulating reagent β-phenethyl isothiocyanate (PEITC) has been found to efficiently deplete GSH and induce potent cell killing effects in drug-resistant CML cells. Combination of PEITC with BCL-XL/BCL2 inhibitor ABT737 or suppression of BCL-XL by BCR-ABL inhibitor Gleevec dramatically sensitizes CML cells to apoptosis. These results have suggested that elevation of BCL-XL and cellular GSH are important for the development of CML, and that redox-directed therapy is worthy of further clinical investigations in CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bcr-abl chimeric oncoprotein exhibits deregulated protein tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph)-positive human leukemias, such as chronic myelogenous leukemia (CML). Recently we have shown that the levels of the protein tyrosine phosphatase PTP1B are enhanced in p210 bcr-abl-expressing cell lines. Furthermore, PTP1B recognizes p210 bcr-abl as a substrate, disrupts the formation of a p210 bcr-abl/Grb2 complex, and inhibits signaling events initiated by this oncoprotein PTK. In this report, we have examined whether PTP1B effects transformation induced by p210 bcr-abl. We demonstrate that expression of either wild-type PTP1B or the substrate-trapping mutant form of the enzyme (PTP1B-D181A) in p210 bcr-abl-transformed Rat-1 fibroblasts diminished the ability of these cells to form colonies in soft agar, to grow in reduced serum, and to form tumors in nude mice. In contrast, TCPTP, the closest relative of PTP1B, did not effect p210 bcr-abl-induced transformation. Furthermore, neither PTP1B nor TCPTP inhibited transformation induced by v-Abl. In addition, overexpression of PTP1B or treatment with CGP57148, a small molecule inhibitor of p210 bcr-abl, induced erythroid differentiation of K562 cells, a CML cell line derived from a patient in blast crisis. These data suggest that PTP1B is a selective, endogenous inhibitor of p210 bcr-abl and is likely to be important in the pathogenesis of CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a rare disease in childhood which is almost exclusively associated with bcr-abl p210 (M-bcr) rearrangements. It has been suggested that co-expression of p 190 and p210 may be a pathway of CML progression in adult patients. We report two cases of pediatric patients with a diagnosis of CML who presented co-expression of the p210 and p190 transcripts during progression to the blastic phase. The present data suggest that p190 may be a secondary event in at least some cases of childhood CML, suggesting an association with progression to a blastic crisis in these patients. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A introdução do mesilato de imatinibe como tratamento da leucemia mielóide crônica tem salvado muitos pacientes, mas o sucesso da terapia tem sido prejudicado pela resistência e possível não destruição do clone maligno. Este artigo descreve a resposta citogenética e padrões citogenéticos anormais envolvendo os genes ABL e BCR detectados por FISH em pacientes em uso exclusivo de imatinibe. Os resultados mostraram que outras alterações envolvendo os genes BCR e ABL não parecem estar relacionadas à resistência à droga, elas ocorrem em baixas freqüências e podem não estar associadas à resposta citogenética ou ao tempo de tratamento. Contudo, a resposta ao imatinibe parece ser individual e imprevisível, independente do tempo e do início do tratamento após o diagnóstico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease arising from a hematopoietic stem cell expressing the BCR/ABL fusion protein. Leukemic and dendritic cells (DCs) develop from the same transformed hematopoietic progenitors. How BCR/ABL interferes with the immunoregulatory function of DCs in vivo is unknown. We analyzed the function of BCR/ABL-expressing DCs in a retroviral-induced murine CML model using the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen. BCR/ABL-expressing DCs were found in bone marrow, thymus, spleen, lymph nodes, and blood of CML mice. They were characterized by a low maturation status and induced only limited expansion of naive and memory cytotoxic T lymphocytes (CTLs). In addition, immunization with in vitro-generated BCR/ABL-expressing DCs induced lower frequencies of specific CTLs than immunization with control DCs. BCR/ABL-expressing DCs preferentially homed to the thymus, whereas only few BCR/ABL-expressing DCs reached the spleen. Our results indicate that BCR/ABL-expressing DCs do not efficiently induce CML-specific T-cell responses resulting from low DC maturation and impaired homing to secondary lymphoid organs. In addition, BCR/ABL-expressing DCs in the thymus may contribute to CML-specific tolerance induction of specific CTLs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bcr-Abl fusion oncogene which resulted from a balanced reciprocal translocation between chromosome 9 and 22, t(9;22)(q11, q34), encodes a 210 KD elevated tyrosine specific protein kinase that is found in more than 95 percent of chronic myelogenous leukemia patients (CML). Increase of level of phosphorylation of tyrosine is observed on cell cycle regulatory proteins in cells overexpressing the Bcr-Abl oncogene, which activates multiple signaling pathways. In addition, distinct signals are required for transforming susceptible fibroblast and hematopoietic cells, and the minimal signals essential for transforming hematopoietic cells are yet to be defined. In the present study, we first established a tetracycline repressible p210$\rm\sp{bcr-abl}$ expression system in a murine myeloid cell line 32D c13, which depends on IL3 to grow in the presence of tetracycline and proliferate independent of IL3 in the absence of tetracycline. Interestingly, one of these sublines does not form tumors in athymic nude mice suggesting that these cells may not be completely transformed. These cells also exhibit a dose-dependent growth and expression of p210$\rm\sp{bcr-abl}$ at varying concentrations of tetracycline in the culture. However, p210$\rm\sp{bcr-abl}$ rescues IL3 deprivation induced apoptosis in a non-dose dependent fashion. DNA genotoxic damage induced by gamma-irradiation activates c-Abl tyrosine kinase, the cellular homologue of p210$\rm\sp{bcr-abl},$ and leads to activation of p38 MAP kinase in the cells. However, in the presence of p210$\rm\sp{bcr-abl}$ the irradiation failed to activate the p38 MAP kinase as examined by an antibody against phosphorylated p38 MAP kinase. Similarly, an altered tyrosine phosphorylation of the JAK1-STAT1 pathways was identified in cells constitutively overexpressing p210$\rm\sp{bcr-abl}.$ This may provided a molecular mechanism for altered therapeutic response of CML patients to IFN-$\alpha.$^ Bcr-Abl oncoprotein has multiple functional domains which have been identified by the work of others. The Bcr tetramerization domain, which may function to stabilize the association of the Bcr-Abl with actin filaments in p210$\rm\sp{bcr-abl}$ susceptible cells, are essential for transforming both fibroblast and hematopoietic cells. We designed a transcription unit encoding first 160 amino acids polypeptide of Bcr protein to test if this polypeptide can inhibit the transforming activity of the p210$\rm\sp{bcr-abl}$ oncoprotein in the 32D c13 cells. When this vector was transfected transiently along with the p210$\rm\sp{bcr-abl}$ expression vector, it can block the transforming activity of p210$\rm\sp{bcr-abl}.$ On the other hand, the retinoblastoma tumor suppressor protein (Rb), a naturally occurring negative regulator of the c-Abl kinase, the cellular homologue of Bcr-Abl oncoprotein, binds to and inhibits the c-Abl kinase in a cell cycle dependent manner. A polypeptide obtained from the carboxyl terminal end of the retinoblastoma tumor suppressor protein, in which the nuclear localization signal was mutated, was used to inhibit the kinase activity of the p210$\rm\sp{bcr-abl}$ in the cytoplasm. This polypeptide, called Rb MC-box, and its wild type form, Rb C-box, when overexpressed in the 32D cells are mainly localized in the cytoplasm. Cotransfection of a plasmid transcription unit coding for this polypeptide and the gene for the p210$\rm\sp{bcr-abl}$ resulted in reduced plating efficiency of p210$\rm\sp{bcr-abl}$ transfected IL3 independent 32D cells. Together, these results may lead to a molecular approach to therapy of CML and an in vitro assay system to identify new targets to which an inhibitory polypeptide transcription unit may be directed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of imatinib dose on response rates and survival in older patients with chronic myeloid leukemia in chronic phase has not been studied well. We analyzed data from the German CML-Study IV, a randomized five-arm treatment optimization study in newly diagnosed BCR-ABL-positive chronic myeloid leukemia in chronic phase. Patients randomized to imatinib 400 mg/day (IM400) or imatinib 800 mg/day (IM800) and stratified according to age (≥65 years vs. <65 years) were compared regarding dose, response, adverse events, rates of progression, and survival. The full 800 mg dose was given after a 6-week run-in period with imatinib 400 mg/day. The dose could then be reduced according to tolerability. A total of 828 patients were randomized to IM400 or IM800. Seven hundred eighty-four patients were evaluable (IM400, 382; IM800, 402). One hundred ten patients (29 %) on IM400 and 83 (21 %) on IM800 were ≥65 years. The median dose per day was lower for patients ≥65 years on IM800, with the highest median dose in the first year (466 mg/day for patients ≥65 years vs. 630 mg/day for patients <65 years). Older patients on IM800 achieved major molecular remission and deep molecular remission as fast as younger patients, in contrast to standard dose imatinib with which older patients achieved remissions much later than younger patients. Grades 3 and 4 adverse events were similar in both age groups. Five-year relative survival for older patients was comparable to that of younger patients. We suggest that the optimal dose for older patients is higher than 400 mg/day. ClinicalTrials.gov identifier: NCT00055874