882 resultados para Large-Scale Optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This observational study analyzed imatinib pharmacokinetics and response in 2478 chronic myeloid leukemia (CML) patients. Data were obtained through centralized therapeutic drug monitoring (TDM) at median treatment duration of ≥2 years. First, individual initial trough concentrations under 400mg/day imatinib starting dose were estimated. Second, their correlation (C^min(400mg)) with reported treatment response was verified. Low imatinib levels were predicted in young male patients and those receiving P-gp/CYP3A4 inducers. These patients had also lower response rates (7% lower 18-months MMR in male, 17% lower 1-year CCyR in young patients, Kaplan-Meier estimates). Time-point independent multivariate regression confirmed a correlation of individual C^min(400mg) with response and adverse events. Possibly due to confounding factors (e.g. dose modifications, patient selection bias), the relationship seemed however flatter than previously reported from prospective controlled studies. Nonetheless, these observational results strongly suggest that a subgroup of patients could benefit from early dosage optimization assisted by TDM, because of lower imatinib concentrations and lower response rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new framework for large-scale data clustering. The main idea is to modify functional dimensionality reduction techniques to directly optimize over discrete labels using stochastic gradient descent. Compared to methods like spectral clustering our approach solves a single optimization problem, rather than an ad-hoc two-stage optimization approach, does not require a matrix inversion, can easily encode prior knowledge in the set of implementable functions, and does not have an ?out-of-sample? problem. Experimental results on both artificial and real-world datasets show the usefulness of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cancer Vaccine Consortium of the Sabin Vaccine Institute (CVC/SVI) is conducting an ongoing large-scale immune monitoring harmonization program through its members and affiliated associations. This effort was brought to life as an external validation program by conducting an international Elispot proficiency panel with 36 laboratories in 2005, and was followed by a second panel with 29 participating laboratories in 2006 allowing for application of learnings from the first panel. Critical protocol choices, as well as standardization and validation practices among laboratories were assessed through detailed surveys. Although panel participants had to follow general guidelines in order to allow comparison of results, each laboratory was able to use its own protocols, materials and reagents. The second panel recorded an overall significantly improved performance, as measured by the ability to detect all predefined responses correctly. Protocol choices and laboratory practices, which can have a dramatic effect on the overall assay outcome, were identified and lead to the following recommendations: (A) Establish a laboratory SOP for Elispot testing procedures including (A1) a counting method for apoptotic cells for determining adequate cell dilution for plating, and (A2) overnight rest of cells prior to plating and incubation, (B) Use only pre-tested serum optimized for low background: high signal ratio, (C) Establish a laboratory SOP for plate reading including (C1) human auditing during the reading process and (C2) adequate adjustments for technical artifacts, and (D) Only allow trained personnel, which is certified per laboratory SOPs to conduct assays. Recommendations described under (A) were found to make a statistically significant difference in assay performance, while the remaining recommendations are based on practical experiences confirmed by the panel results, which could not be statistically tested. These results provide initial harmonization guidelines to optimize Elispot assay performance to the immunotherapy community. Further optimization is in process with ongoing panels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, a high penetration level of Distributed Generations (DGs) has been observed in the Danish distribution systems, and even more DGs are foreseen to be present in the upcoming years. How to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. This master project is intended to develop a control architecture for studying purposes of distribution systems with large scale integration of solar power. As part of the EcoGrid EU Smart Grid project, it focuses on the system modelling and simulation of a Danish representative LV network located in Bornholm island. Regarding the control architecture, two types of reactive control techniques are implemented and compare. In addition, a network voltage control based on a tap changer transformer is tested. The optimized results after applying a genetic algorithm to five typical Danish domestic loads are lower power losses and voltage deviation using Q(U) control, specially with large consumptions. Finally, a communication and information exchange system is developed with the objective of regulating the reactive power and thereby, the network voltage remotely and real-time. Validation test of the simulated parameters are performed as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an interior point method for the long-term generation scheduling of large-scale hydrothermal systems. The problem is formulated as a nonlinear programming one due to the nonlinear representation of hydropower production and thermal fuel cost functions. Sparsity exploitation techniques and an heuristic procedure for computing the interior point method search directions have been developed. Numerical tests in case studies with systems of different dimensions and inflow scenarios have been carried out in order to evaluate the proposed method. Three systems were tested, with the largest being the Brazilian hydropower system with 74 hydro plants distributed in several cascades. Results show that the proposed method is an efficient and robust tool for solving the long-term generation scheduling problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When composing stock portfolios, managers frequently choose among hundreds of stocks. The stocks' risk properties are analyzed with statistical tools, and managers try to combine these to meet the investors' risk profiles. A recently developed tool for performing such optimization is called full-scale optimization (FSO). This methodology is very flexible for investor preferences, but because of computational limitations it has until now been infeasible to use when many stocks are considered. We apply the artificial intelligence technique of differential evolution to solve FSO-type stock selection problems of 97 assets. Differential evolution finds the optimal solutions by self-learning from randomly drawn candidate solutions. We show that this search technique makes large scale problem computationally feasible and that the solutions retrieved are stable. The study also gives further merit to the FSO technique, as it shows that the solutions suit investor risk profiles better than portfolios retrieved from traditional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a potential method to assist developers of future bioenergy schemes when selecting from available suppliers of biomass materials. The method aims to allow tacit requirements made on biomass suppliers to be considered at the design stage of new developments. The method used is a combination of the Analytical Hierarchy Process and the Quality Function Deployment methods (AHP-QFD). The output of the method is a ranking and relative weighting of the available suppliers which could be used to improve optimization algorithms such as linear and goal programming. The paper is at a conceptual stage and no results have been obtained. The aim is to use the AHP-QFD method to bridge the gap between treatment of explicit and tacit requirements of bioenergy schemes; allowing decision makers to identify the most successful supply strategy available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of recombinant therapeutic proteins is an active area of research in drug development. These bio-therapeutic drugs target nearly 150 disease states and promise to bring better treatments to patients. However, if new bio-therapeutics are to be made more accessible and affordable, improvements in production performance and optimization of processes are necessary. A major challenge lies in controlling the effect of process conditions on production of intact functional proteins. To achieve this, improved tools are needed for bio-processing. For example, implementation of process modeling and high-throughput technologies can be used to achieve quality by design, leading to improvements in productivity. Commercially, the most sought after targets are secreted proteins due to the ease of handling in downstream procedures. This chapter outlines different approaches for production and optimization of secreted proteins in the host Pichia pastoris. © 2012 Springer Science+business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale enzymatic resolution of racemic sulcatol 2 has been useful for stereoselective biocatalysis. This reaction was fast and selective, using vinyl acetate as donor of acyl group and lipase from Candida antarctica (CALB) as catalyst. The large scale reaction (5.0 g, 39 mmol) afforded high optical purities for S-(+)-sulcatol 2 and R-(+)-sulcatyl acetate 3, i.e., ee > 99 per cent and good yields (45 per cent) within a short time (40 min). Thermodynamic parameters for the chemoesterification of sulcatol 2 by vinyl acetate were evaluated. The enthalpy and Gibbs free energy values of this reaction were negative, indicating that this process is exothermic and spontaneous which is in agreement with the reaction obtained enzymatically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 150 years, Brazil has played a pioneering role in developing environmental policies and pursuing forest conservation and ecological restoration of degraded ecosystems. In particular, the Brazilian Forest Act, first drafted in 1934, has been fundamental in reducing deforestation and engaging private land owners in forest restoration initiatives. At the time of writing (December 2010), however, a proposal for major revision of the Brazilian Forest Act is under intense debate in the National Assembly, and we are deeply concerned about the outcome. On the basis of the analysis of detailed vegetation and hydrographic maps, we estimate that the proposed changes may reduce the total amount of potential areas for restoration in the Atlantic Forest by approximately 6 million hectares. As a radically different policy model, we present the Atlantic Forest Restoration Pact (AFRP), which is a group of more than 160 members that represents one of the most important and ambitious ecological restoration programs in the world. The AFRP aims to restore 15 million hectares of degraded lands in the Brazilian Atlantic Forest biome by 2050 and increase the current forest cover of the biome from 17% to at least 30%. We argue that not only should Brazilian lawmakers refrain from revising the existing Forest Law, but also greatly step up investments in the science, business, and practice of ecological restoration throughout the country, including the Atlantic Forest. The AFRP provides a template that could be adapted to other forest biomes in Brazil and to other megadiversity countries around the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex interactions among endangered ecosystems, landowners` interests, and different models of land tenure and use, constitute an important series of challenges for those seeking to maintain and restore biodiversity and augment the flow of ecosystem services. Over the past 10 years, we have developed a data-based approach to address these challenges and to achieve medium and large-scale ecological restoration of riparian areas on private lands in the state of Sao Paulo, southeastern Brazil. Given varying motivations for ecological restoration, the location of riparian areas within landholdings, environmental zoning of different riparian areas, and best-practice restoration methods were developed for each situation. A total of 32 ongoing projects, covering 527,982 ha, were evaluated in large sugarcane farms and small mixed farms, and six different restoration techniques have been developed to help upscale the effort. Small mixed farms had higher portions of land requiring protection as riparian areas (13.3%), and lower forest cover of riparian areas (18.3%), than large sugarcane farms (10.0% and 36.9%, respectively for riparian areas and forest cover values). In both types of farms, forest fragments required some degree of restoration. Historical anthropogenic degradation has compromised forest ecosystem structure and functioning, despite their high-diversity of native tree and shrub species. Notably, land use patterns in riparian areas differed markedly. Large sugarcane farms had higher portions of riparian areas occupied by highly mechanized agriculture, abandoned fields, and anthropogenic wet fields created by siltation in water courses. In contrast, in small mixed crop farms, low or non-mechanized agriculture and pasturelands were predominant. Despite these differences, plantations of native tree species covering the entire area was by far the main restoration method needed both by large sugarcane farms (76.0%) and small mixed farms (92.4%), in view of the low resilience of target sites, reduced forest cover, and high fragmentation, all of which limit the potential for autogenic restoration. We propose that plantations should be carried out with a high-diversity of native species in order to create biologically viable restored forests, and to assist long-term biodiversity persistence at the landscape scale. Finally, we propose strategies to integrate the political, socio-economic and methodological aspects needed to upscale restoration efforts in tropical forest regions throughout Latin America and elsewhere. (C) 2010 Elsevier BA/. All rights reserved.