926 resultados para Laplace inverse transform
Resumo:
The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents parallel recursive algorithms for the computation of the inverse discrete Legendre transform (DPT) and the inverse discrete Laguerre transform (IDLT). These recursive algorithms are derived using Clenshaw's recurrence formula, and they are implemented with a set of parallel digital filters with time-varying coefficients.
Resumo:
Every x-ray attenuation curve inherently contains all the information necessary to extract the complete energy spectrum of a beam. To date, attempts to obtain accurate spectral information from attenuation data have been inadequate.^ This investigation presents a mathematical pair model, grounded in physical reality by the Laplace Transformation, to describe the attenuation of a photon beam and the corresponding bremsstrahlung spectral distribution. In addition the Laplace model has been mathematically extended to include characteristic radiation in a physically meaningful way. A method to determine the fraction of characteristic radiation in any diagnostic x-ray beam was introduced for use with the extended model.^ This work has examined the reconstructive capability of the Laplace pair model for a photon beam range of from 50 kVp to 25 MV, using both theoretical and experimental methods.^ In the diagnostic region, excellent agreement between a wide variety of experimental spectra and those reconstructed with the Laplace model was obtained when the atomic composition of the attenuators was accurately known. The model successfully reproduced a 2 MV spectrum but demonstrated difficulty in accurately reconstructing orthovoltage and 6 MV spectra. The 25 MV spectrum was successfully reconstructed although poor agreement with the spectrum obtained by Levy was found.^ The analysis of errors, performed with diagnostic energy data, demonstrated the relative insensitivity of the model to typical experimental errors and confirmed that the model can be successfully used to theoretically derive accurate spectral information from experimental attenuation data. ^
Resumo:
Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal. © 2013 Optical Society of America.
Resumo:
Mathematics Subject Classification: Primary 30C40
Resumo:
This paper proposes a JPEG-2000 compliant architecture capable of computing the 2 -D Inverse Discrete Wavelet Transform. The proposed architecture uses a single processor and a row-based schedule to minimize control and routing complexity and to ensure that processor utilization is kept at 100%. The design incorporates the handling of borders through the use of symmetric extension. The architecture has been implemented on the Xilinx Virtex2 FPGA.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Faculdade de Tecnologia, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2016.
Resumo:
We study the Segal-Bargmann transform on M(2). The range of this transform is characterized as a weighted Bergman space. In a similar fashion Poisson integrals are investigated. Using a Gutzmer's type formula we characterize the range as a class of functions extending holomorphically to an appropriate domain in the complexification of M(2). We also prove a Paley-Wiener theorem for the inverse Fourier transform.
Resumo:
For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, based on the theory of dynamic boundary integral equation, an optimization method for crack identification is set up in the Laplace frequency space, where the direct problem is solved by the author's new type boundary integral equations and a method for choosing the high sensitive frequency region is proposed. The results show that the method proposed is successful in using the information of boundary elastic wave and overcoming the ill-posed difficulties on solution, and helpful to improve the identification precision.
Resumo:
Inverse symmetric Dammann grating is a special grating, whose transition points are reflection symmetric about the midpoint with inverse phase offset in one period. It can produce even-numbered or odd-numbered array illumination when the phase modulations are pi or a specific value. Numerical solutions optimized by the steepest-descent algorithm for binary phase and multilevel phases with splitting ratio from I x 4 to 1 x 14 are given. Fabrication of 1 x 6 array without the zero-order intensity and 1 x 7 array with the zero-order intensity are made from the same amplitude mask. A 6 x 6 output without the crossed zero-orders was achieved by crossing two one-dimensional 1 x 6 inverse symmetric Dammann gratings. This grating may have potential value for practical applications. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A distributed algorithm is developed to solve nonlinear Black-Scholes equations in the hedging of portfolios. The algorithm is based on an approximate inverse Laplace transform and is particularly suitable for problems that do not require detailed knowledge of each intermediate time steps.