896 resultados para LOCAL INFLUENCE
Resumo:
We consider the issue of assessing influence of observations in the class of beta regression models, which is useful for modelling random variables that assume values in the standard unit interval and are affected by independent variables. We propose a Cook-like distance and also measures of local influence under different perturbation schemes. Applications using real data are presented. (c) 2008 Elsevier B.V.. All rights reserved.
Resumo:
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
Resumo:
This paper provides general matrix formulas for computing the score function, the (expected and observed) Fisher information and the A matrices (required for the assessment of local influence) for a quite general model which includes the one proposed by Russo et al. (2009). Additionally, we also present an expression for the generalized leverage on fixed and random effects. The matrix formulation has notational advantages, since despite the complexity of the postulated model, all general formulas are compact, clear and have nice forms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main goal of this article is to consider influence assessment in models with error-prone observations and variances of the measurement errors changing across observations. The techniques enable to identify potential influential elements and also to quantify the effects of perturbations in these elements on some results of interest. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.
Resumo:
In this paper, we propose nonlinear elliptical models for correlated data with heteroscedastic and/or autoregressive structures. Our aim is to extend the models proposed by Russo et al. [22] by considering a more sophisticated scale structure to deal with variations in data dispersion and/or a possible autocorrelation among measurements taken throughout the same experimental unit. Moreover, to avoid the possible influence of outlying observations or to take into account the non-normal symmetric tails of the data, we assume elliptical contours for the joint distribution of random effects and errors, which allows us to attribute different weights to the observations. We propose an iterative algorithm to obtain the maximum-likelihood estimates for the parameters and derive the local influence curvatures for some specific perturbation schemes. The motivation for this work comes from a pharmacokinetic indomethacin data set, which was analysed previously by Bocheng and Xuping [1] under normality.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
Resumo:
Managers in five nations rated scenarios exemplifying indigenous forms of informal influence whose cultural origins were concealed. Locally generated scenarios illustrated episodes of guanxi, wasta, jeitinho, svyazi and pulling strings. Local scenarios were judged representative of local influence processes but so too were some scenarios derived from other contexts. Furthermore, many scenarios were rated as more typical in non-local contexts. While these influence processes are found to be widely disseminated, they occur more frequently in contexts characterized by high self-enhancement values, low self-transcendence values and high endorsement of business corruptibility. Implications for a fuller understanding of local business practices are discussed. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
O atual nível das mudanças uso do solo causa impactos nas mudanças ambientais globais. Os processos de mudanças do uso e cobertura do solo são processos complexos e não acontecem ao acaso sobre uma região. Geralmente estas mudanças são determinadas localmente, regionalmente ou globalmente por fatores geográficos, ambientais, sociais, econômicos e políticos interagindo em diversas escalas temporais e espaciais. Parte desta complexidade é capturada por modelos de simulação de mudanças do uso e cobertura do solo. Uma etapa do processo de simulação do modelo CLUE-S é a quantificação da influência local dos impulsores de mudança sobre a probabilidade de ocorrência de uma classe de uso do solo. Esta influência local é obtida ajustando um modelo de regressão logística. Um modelo de regressão espacial é proposto como alternativa para selecionar os impulsores de mudanças. Este modelo incorpora a informação da vizinhança espacial existente nos dados que não é considerada na regressão logística. Baseado em um cenário de tendência linear para a demanda agregada do uso do solo, simulações da mudança do uso do solo para a microbacia do Coxim, Mato Grosso do Sul, foram geradas, comparadas e analisadas usando o modelo CLUE-S sob os enfoques da regressão logística e espacial para o período de 2001 a 2011. Ambos os enfoques apresentaram simulações com muito boa concordância, medidas de acurácia global e Kappa altos, com o uso do solo para o ano de referência de 2004. A diferença entre os enfoques foi observada na distribuição espacial da simulação do uso do solo para o ano 2011, sendo o enfoque da regressão espacial que teve a simulação com menor discrepância com a demanda do uso do solo para esse ano.
Resumo:
The signing of the Ulster Covenant on 28 September 1912 by almost 450,000 men and women was a powerful act of defiance on the part of Unionists in the context of what they perceived as the threat to their way of life represented by the Liberal Government's policy of Irish Home Rule. This article attempts to look beyond the well-studied leadership figures of Carson and Craig in order to fashion insights into the way Ulster Protestant society was mobilised around the Covenant and opposition to Home Rule. It draws attention to hitherto over-shadowed personalities who can be said to have exerted crucial local influence. It also contends that although pan-Protestant denominational unity provided the basis for the success of the Covenant, the Presbyterian community was particularly cohesive and purposeful in the campaign. The article further argues that the risk-taking defiance that came more easily to the Presbyterians, on account of a troubled history, largely evaporated in the new political circumstances of Northern Ireland when it became a separate devolved political entity within the UK from 1921.
Resumo:
The relationship between winter (DJF) rainfall over Portugal and the variable large scale circulation is addressed. It is shown that the poles of the sea level pressure (SLP) field variability associated with rainfall variability are shifted about 15° northward with respect to those used in standard definitions of the North Atlantic Oscillation (NAO). It is suggested that the influence of NAO on rainfall dominantly arises from the associated advection of humidity from the Atlantic Ocean. Rainfall is also related to different aspects of baroclinic wave activity, the variability of the latter quantity in turn being largely dependent on the NAO.
A negative NAO index (leading to increased westerly surface geostrophic winds into Portugal) is associated with an increased number of deep (ps<980 hPa) surface lows over the central North Atlantic and of intermediate (980
Resumo:
In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.
Resumo:
In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.