954 resultados para LIE-ALGEBRA
Resumo:
In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A.
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.
Resumo:
We derive the current algebra of supersymmetric principal chiral models with a Wess-Zumino term. At the critical point one obtains two commuting super-affine Lie algebras as expected, but, in general, them are intertwining fields connecting both right and left sectors, analogously to the bosonic case. Moreover, in the present supersymmetric extension we have a quadratic algebra, rather than an affine Lie algebra, due to the mixing between bosonic and fermionic fields; the purely fermionic sector displays an affine Lie algebra as well.
Resumo:
The construction of a q-deformed N = 2 superconformal algebra is proposed in terms of level-1 currents of the U-q(<(su)over cap>(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed energy-momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to U-q(<(su)over cap>(N + 1)) is also proposed.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
We show that by using second-order differential operators as a realization of the so(2,1) Lie algebra, we can extend the class of quasi-exactly-solvable potentials with dynamical symmetries. As an example, we dynamically generate a potential of tenth power, which has been treated in the literature using other approaches, and discuss its relation with other potentials of lowest orders. The question of solvability is also studied. © 1991 The American Physical Society.
Resumo:
Pós-graduação em Física - IFT
Resumo:
The generalizations of Lie algebras appeared in the modern mathematics and mathematical physics. In this paper we consider recent developments and remaining open problems on the subject. Some of that developments have been influenced by lectures given by Professor Jaime Keller in his research seminar. The survey includes Lie superalgebras, color Lie algebras, Lie algebras in symmetric categories, free Lie tau-algebras, and some generalizations with non-associative enveloping algebras: tangent algebras to analytic loops, bialgebras and primitive elements, non-associative Hopf algebras.
Resumo:
We describe (braided-) commutative algebras with non-degenerate multiplicative form in certain braided monoidal categories, corresponding to abelian metric Lie algebras (so-called Drinfeld categories). We also describe local modules over these algebras and classify commutative algebras with a finite number of simple local modules.
Resumo:
We prove that the simple Lie algebras constructed by G. Jurman (2004) in 121 are isomorphic to Hamiltonian algebras. As a corollary we answer all questions formulated in G. Jurman (2004) [2] about isomorphisms of these algebras. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
La classificazione delle algebre di Lie semplici di dimensione finita su un campo algebricamente chiuso si divide in due parti: le algebre di Lie classiche e quelle eccezionali. La differenza principale è che le algebre di Lie classiche vengono introdotte come algebre di matrici, quelle eccezionali invece non si presentano come algebre di matrici ma un modo di introdurle è attraverso il loro diagramma di Dynkin. Lo scopo della tesi è di realizzare l' algebra di Lie eccezionale di tipo G_2 come algebra di matrici. Per raggiungere tale scopo viene introdotta un' algebra di composizione: la cosiddetta algebra degli ottonioni. Quest'ultima viene costruita in due modi diversi: come spazio vettoriale sui reali con un prodotto bilineare e come insieme delle coppie ordinate di quaternioni. Il resto della tesi è dedicato all' algebra delle derivazioni degli ottonioni. Viene dimostrato che questa è un' algebra di Lie semisemplice di dimensione 14. Infine, considerando la complessificazione dell'algebra delle derivazioni degli ottonioni, viene dimostrato che quest'ultima è semplice e quindi isomorfa a G_2.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
Марта Теофилова - Конструиран е пример на четиримерно специално комплексно многообразие с норденова метрика и постоянна холоморфна секционна кривина чрез двупара-метрично семейство от разрешими алгебри на Ли. Изследвани са кривинните свойства на полученото многообразие. Дадени са необходими и достатъчни усло-вия за разглежданото многообразие да бъде изотропно келерово.
Resumo:
2000 Mathematics Subject Classification: 17B01, 17B30, 17B40.
Resumo:
2000 Mathematics Subject Classification: 17B01, 17B30, 17B40.