944 resultados para Kalgoorlie Terrain
Resumo:
The John Lewis Partnership is one of Europe’s largest models of employee ownership and has been operating a form of employee involvement and participation since its formation in 1929. It is frequently held up as a model of best practice (Cathcart, 2013) and has been described as a ‘workers’ paradise’ (Stummer and Lacey, 2001). At the beginning of 2012, the Deputy Prime Minister of the UK unveiled plans to create a ‘John Lewis Economy’ (Wintour, 2012). As John Lewis is being positioned at the heart of political and media discussions in the UK about alternatives to the corporate capitalist model of enterprise, it is vital that more is known about the experience of employee involvement and participation within the organisation. This article explores the ways in which the practice of employee involvement and participation has changed in John Lewis as a result of competing employee and managerial interests. Its contribution is a contemporary exploration of participation in the John Lewis Partnership and an examination of the ways in which management and employees contested the meaning and practice of employee involvement and participation as part of a ‘democracy project’, which culminated in significant changes and degeneration of the democratic structures.
Resumo:
For a planetary rover to successfully traverse across unstructured terrain autonomously, one of the major challenges is to assess its local traversability such that it can plan a trajectory to achieve its mission goals efficiently while minimising risk to the vehicle itself. This paper aims to provide a comparative study on different approaches for representing the geometry of Martian terrain for the purpose of evaluating terrain traversability. An accurate representation of the geometric properties of the terrain is essential as it can directly affect the determination of traversability for a ground vehicle. We explore current state-of-the-art techniques for terrain estimation, in particular Gaussian Processes (GP) in various forms, and discuss the suitability of each technique in the context of an unstructured Martian terrain. Furthermore, we present the limitations of regression techniques in terms of spatial correlation and continuity assumptions, and the impact on traversability analysis of a planetary rover across unstructured terrain. The analysis was performed on datasets of the Mars Yard at the Powerhouse Museum in Sydney, obtained using the onboard RGB-D camera.
Resumo:
It is well recognized that many scientifically interesting sites on Mars are located in rough terrains. Therefore, to enable safe autonomous operation of a planetary rover during exploration, the ability to accurately estimate terrain traversability is critical. In particular, this estimate needs to account for terrain deformation, which significantly affects the vehicle attitude and configuration. This paper presents an approach to estimate vehicle configuration, as a measure of traversability, in deformable terrain by learning the correlation between exteroceptive and proprioceptive information in experiments. We first perform traversability estimation with rigid terrain assumptions, then correlate the output with experienced vehicle configuration and terrain deformation using a multi-task Gaussian Process (GP) framework. Experimental validation of the proposed approach was performed on a prototype planetary rover and the vehicle attitude and configuration estimate was compared with state-of-the-art techniques. We demonstrate the ability of the approach to accurately estimate traversability with uncertainty in deformable terrain.
Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.
Resumo:
On our first day in Kalgoorlie, a local woman in her mid-thirties tells us that ‘Kal wouldn’t exist if it wasn’t for mining and prostitution’. In the ensuing days many others would tell us the same thing. More explicitly, in the words of another local resident, ‘The town was founded on brothels. [Without them] the men wouldn’t have been happy and they wouldn’t have got as much gold.’ These two phenomena – mining and prostitution – and their seemingly natural and straightforward connection to each other are also routinely invoked in tourist and popular culture depictions of Kalgoorlie. The Lonely Planet, for example, notes that ‘historically, mineworkers would come straight to town to spend disposable income at Kalgoorlie’s infamous brothels, or at pubs staffed by “skimpies” (scantily clad female bar staff)’.
Resumo:
With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.
Resumo:
The thick package of ~2.7 Ga mafic and ultramafic lavas and intrusions preserved among the Neoarchean of the Kalgoorlie Terrene in Western Australia provides valuable insight into geological processes controlling the most prodigious episode of growth and preservation of juvenile continental crust in Earth’s history. Limited exposure of these rocks results in uncertainty about their age, physical and chemical characteristics, and stratigraphic relationships. This in turn prevents confident correlation of regional occurrences of mafic and ultramafic successions (both intrusive and extrusive) and hinders the interpretation of tectonic setting and magmatic evolution. A recent stratigraphic drilling program of the Neoarchean stratigraphy of the Agnew Greenstone Belt in Western Australia has provided continuous exposures through a c. 7 km thick sequence of mafic and ultramafic units. In this study, we present a volcanological, lithogeochemical and chronological study of the Agnew Greenstone Belt, and provide the first pre-2690 Ma regional correlation across the Kalgoorlie Terrane. The Agnew Greenstone Belt records ~30 m.y. of episodic ultramafic-mafic magmatism that includes two cycles, each defined by a komatiite that is overlain by units that become more evolved and contaminated with time. The sequence is divided into nine conformable packages, each consisting of stacked subaqueous lava flows and comagmatic intrusions, as well as two sills without associated extrusions. Lavas, with the exception of intercalations between two units, form a layer-cake stratigraphy and were likely erupted from a system of fissures tapping the same magma source. The komatiites are not contaminated by continental crust ([La/Sm]PM ~0.7) and are of the Al-undepleted Munro-type. Crustal contamination is evident in many units (Songvang Basalt, Never Can Tell Basalt, Redeemer Basalt, and Turrett Dolerite), as judged by [La/Sm]>1, negative Nb and Ti anomalies, and geochemical mixing trends towards felsic contaminants. Crystal fractionation was also significant, with early olivine and chromite (Mg#>65) followed by plagioclase and clinopyroxene removal (Mg<65), and in the most evolved case, titanomagnetite accumulation. Three new TIMS dates on granophyric zones of mafic sills and one ICP-MS date from an interflow felsic tuff are presented and used for regional stratigraphic correlation. Cycle I magmatism began at ~2720 Ma and ended ~2705 Ma, whereas cycle II began ~2705 Ma and ended at 2690.7±1.2 Ma. Regional correlations indicate the western Kalgoorlie Terrane consists of a remarkably similar stratigraphy that can be recognised at Agnew, Ora Banda and Coolgardie, whereas the eastern part of the terrane (e.g., Kambalda Domain) does not include cycle I, but correlates well with cycle II. This research supports an autochthonous model of greenstone formation, in which one large igneous province, represented by two complete cycles, is constructed on sialic crust. New stratigraphic correlations for the Kalgoorlie Terrane indicate that many units can be traced over distances >100 km, which has implications for exploration targeting for stratigraphically hosted ultramafic Ni and VMS deposits.
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
Data-driven approaches such as Gaussian Process (GP) regression have been used extensively in recent robotics literature to achieve estimation by learning from experience. To ensure satisfactory performance, in most cases, multiple learning inputs are required. Intuitively, adding new inputs can often contribute to better estimation accuracy, however, it may come at the cost of a new sensor, larger training dataset and/or more complex learning, some- times for limited benefits. Therefore, it is crucial to have a systematic procedure to determine the actual impact each input has on the estimation performance. To address this issue, in this paper we propose to analyse the impact of each input on the estimate using a variance-based sensitivity analysis method. We propose an approach built on Analysis of Variance (ANOVA) decomposition, which can characterise how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We apply the proposed approach to a terrain-traversability estimation method we proposed in prior work, which is based on multi-task GP regression, and we validate this implementation experimentally using a rover on a Mars-analogue terrain.
Resumo:
Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.
Resumo:
This thesis summarises the results of four original papers concerning U-Pb geochronology and geochemical evolution of Archaean rocks from the Kuhmo terrain and the Nurmes belt, eastern Finland. The study area belongs to a typical Archaean granite-greenstone terrain, composed of metavolcanic and metasedimentary rocks in generally N-S trending greenstone belts as well as a granitoid-gneiss complex with intervening gneissic and migmatised supracrustal and plutonic rocks. U-Pb data on migmatite mesosomes indicate that the crust surrounding the Tipasjärvi-Kuhmo-Suomussalmi greenstone belt is of varying age. The oldest protolith detected for a migmatite mesosome from the granitoid-gneiss complex is 2.94 Ga, whereas the other dated migmatites protoliths have ages of 2.84 2.79 Ga. The latter protoliths are syngenetic with the majority of volcanic rocks in the adjacent Tipasjärvi-Kuhmo-Suomussalmi greenstone belt. This suggests that the genesis of some of the volcanic rocks within the greenstone belt and surrounding migmatite protoliths could be linked. Metamorphic zircon overgrowths with ages of 2.84 2.81 Ga were also obtained. The non-migmatised plutonic rocks in the Kuhmo terrain and in the Nurmes belt record secular geochemical evolution, typical of Archaean cratons. The studied tonalitic rocks have ages of 2.83 2.75 Ga and they have geochemical characteristics similar to low-Al and high-Al TTD (tonalite-trondhjemite-dacite). The granodiorites, diorites, and gabbros with high Mg/Fe and LILE-enriched characteristics were mostly emplaced between 2.74 2.70 Ga and they exhibit geochemical characteristics typical of Archaean sanukitoid suites. The latest identified plutonic episode took place at 2.70 2.68 Ga, when compositionally heterogeneous leucocratic granitoid rocks, with a variable crustal component, were emplaced. U-Pb data on migmatite leucosomes suggest that leucosome generation may have been coeval with this latest plutonic event. On the basis of available U-Pb and Sm-Nd isotopic data it appears that the plutonic rocks of the Kuhmo terrain and the Nurmes belt do not contain any significant input from Palaeoarchaean sources. A characteristic feature of the Nurmes belt is the presence of migmatised paragneisses, locally preserving primary edimentary structures, with sporadic amphibolite intercalations. U-Pb studies on zircons indicate that the precursors of the Nurmes paragneisses were graywackes that were deposited between 2.71 Ga and 2.69 Ga and that they had a prominent 2.75 2.70 Ga source. Nd isotopic and whole-rock geochemical data for the intercalated amphibolites imply MORB sources. U-Pb data on zircons from the plutonic rocks and paragneisses reveal that metamorphic zircon growth took place at 2.72 2.63 Ga. This was the last tectonothermal event related to cratonisation of the Archaean crust of eastern Finland.
Resumo:
The concept of globalization has become a shorthand for making sense of contemporary society. It reflects large-scale economic and social change, which affects people differently and evokes different viewpoints. Globalization is thus a highly contested concept and phenomenon. Contradictory and competing views, in turn, seem to be based on different interpretations of the present dominant forms of globalization, and of the material, economic, social and cultural conditions that these forms produce and give rise to. We view globalization not only as a significant set of economic, financial, social, political and cultural forces but as a powerful and contested discursive space. In this article, we present an overview of recent literature to introduce different thematic perspectives on globalization, to specify different ideological and discursive bases to approach globalization, and to place multinational corporations (MNC:s) within this context. Our account is not exhaustive, rather, it is intended as a basis for further discussion on the nature and role of multinational corporations in complex ”global” society
Resumo:
Instrument landing systems (ILS) are normally designed assuming the site around them to be flat. Uneven terrain results in undulations in the glidescope. In recent years, models have been evolved for predicting such aberrations as a simpler alternative to experimental methods. Such modeling normally assumes the ground to be fully conducting. A method is presented for considering imperfect terrain conductivity within the framework of the uniform theory of diffraction (UTD). A single impedance wedge formulation is developed to a form that resembles the standard form of UTD, with only one extra term in the diffraction coefficient. This extends the applicability of the standard UTD formulation and software packages to the case of the imperfectly conducting terrain. The method has been applied to a real airport site in India and improved agreement with measured glidescope parameters is demonstrated
Resumo:
In correlation filtering we attempt to remove that component of the aeromagnetic field which is closely related to the topography. The magnetization vector is assumed to be spatially variable, but it can be successively estimated under the additional assumption that the magnetic component due to topography is uncorrelated with the magnetic signal of deeper origin. The correlation filtering was tested against a synthetic example. The filtered field compares very well with the known signal of deeper origin. We have also applied this method to real data from the south Indian shield. It is demonstrated that the performance of the correlation filtering is superior in situations where the direction of magnetization is variable, for example, where the remnant magnetization is dominant.
Resumo:
The structural state of K-feldspars in the quartzofeldspathic gneisses, charnockites, metapelites and pegmatites from the southern Kamataka, northern Tamil Nadu and southern Kerala high-grade regions of southern India has been characterized using petrographic and powder X-ray diffraction methods. The observed distribution pattern of structural state with a preponderance of disordered K-feldspar polymorphs in granulites compared to the ordered microclines in the amphibolite facies rocks is interpreted to reflect principally the varying H2O contents in the metamorphic-metasomatic fluids across metamorphic grade. The K-feldspars in the pegmatites of granitic derivation and in a pegmatite of inferred metamorphic origin also point to the important role of aqueous fluids in their structural state.