983 resultados para JPEG-LS
Resumo:
In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.
Resumo:
在JPEG静止图象压缩的基础上,设计了一种扩充的自适应量化器.利用人眼的视觉特征,通过分析MCU块的局部视觉活动性,以MCU活动性函数确定量化因子,并引入亮度掩盖算子调节量化参量.实验结果表明,本文所设计的自适应量化器能减少图象编码主观失真,改善图象质量,获得更好的压缩效果
Resumo:
We present high-resolution spectroscopic observations of LS 4825, a V = 12 B-type star in the Galactic center direction. On the basis of its stellar and interstellar spectra, we infer that it is likely to be a young supergiant at a distance of 21 +/- 5 kpc, and hence lying on the far side of the 'Galaxy. Adopting this hypothesis, a differential abundance analysis shows LS 4825 to have a chemical composition that is consistent with local B-type supergiants. These observations therefore represent the first detailed investigation of a star on the far side of the Galactic center. We trace multiple interstellar components in Ca II K and Na I D spectra, with velocities -206 less than or equal to v(lst) less than or equal to +93 km s(-1). We consider the likely origin of this gas and find that some components appear to trace matter lying close to the Galactic center. We discuss the possible use of such sight lines in furthering our understanding both of the nature of gas around the Galactic center and of the abundance gradient of the Galaxy.
Resumo:
The design of a System-on-a-Chip (SoC) demonstrator for a baseline JPEG encoder core is presented. This combines a highly optimized Discrete Cosine Transform (DCT) and quantization unit with an entropy coder which has been realized using off-the-shelf synthesizable IP cores (Run-length coder, Huffman coder and data packer). When synthesized in a 0.35 µm CMOS process, the core can operate at speeds up to 100 MHz and contains 50 k gates plus 11.5 kbits of RAM. This is approximately 20% less than similar JPEG encoder designs reported in literature. When targeted at FPGA the core can operate up to 30 MHz and is capable of compressing 9-bit full-frame color input data at NTSC or PAL rates.
Resumo:
Blind steganalysis of JPEG images is addressed by modeling the correlations among the DCT coefficients using K -variate (K = 2) p.d.f. estimates (p.d.f.s) constructed by means of Markov random field (MRF) cliques. The reasoning of using high variate p.d.f.s together with MRF cliques for image steganalysis is explained via a classical detection problem. Although our approach has many improvements over the current state-of-the-art, it suffers from the high dimensionality and the sparseness of the high variate p.d.f.s. The dimensionality problem as well as the sparseness problem are solved heuristically by means of dimensionality reduction and feature selection algorithms. The detection accuracy of the proposed method(s) is evaluated over Memon's (30.000 images) and Goljan's (1912 images) image sets. It is shown that practically applicable steganalysis systems are possible with a suitable dimensionality reduction technique and these systems can provide, in general, improved detection accuracy over the current state-of-the-art. Experimental results also justify this assertion.
Resumo:
Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing step. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.
Resumo:
This paper proposes an efficient learning mechanism to build fuzzy rule-based systems through the construction of sparse least-squares support vector machines (LS-SVMs). In addition to the significantly reduced computational complexity in model training, the resultant LS-SVM-based fuzzy system is sparser while offers satisfactory generalization capability over unseen data. It is well known that the LS-SVMs have their computational advantage over conventional SVMs in the model training process; however, the model sparseness is lost, which is the main drawback of LS-SVMs. This is an open problem for the LS-SVMs. To tackle the nonsparseness issue, a new regression alternative to the Lagrangian solution for the LS-SVM is first presented. A novel efficient learning mechanism is then proposed in this paper to extract a sparse set of support vectors for generating fuzzy IF-THEN rules. This novel mechanism works in a stepwise subset selection manner, including a forward expansion phase and a backward exclusion phase in each selection step. The implementation of the algorithm is computationally very efficient due to the introduction of a few key techniques to avoid the matrix inverse operations to accelerate the training process. The computational efficiency is also confirmed by detailed computational complexity analysis. As a result, the proposed approach is not only able to achieve the sparseness of the resultant LS-SVM-based fuzzy systems but significantly reduces the amount of computational effort in model training as well. Three experimental examples are presented to demonstrate the effectiveness and efficiency of the proposed learning mechanism and the sparseness of the obtained LS-SVM-based fuzzy systems, in comparison with other SVM-based learning techniques.
Resumo:
Cloud data centres are implemented as large-scale clusters with demanding requirements for service performance, availability and cost of operation. As a result of scale and complexity, data centres typically exhibit large numbers of system anomalies resulting from operator error, resource over/under provisioning, hardware or software failures and security issus anomalies are inherently difficult to identify and resolve promptly via human inspection. Therefore, it is vital in a cloud system to have automatic system monitoring that detects potential anomalies and identifies their source. In this paper we present a lightweight anomaly detection tool for Cloud data centres which combines extended log analysis and rigorous correlation of system metrics, implemented by an efficient correlation algorithm which does not require training or complex infrastructure set up. The LADT algorithm is based on the premise that there is a strong correlation between node level and VM level metrics in a cloud system. This correlation will drop significantly in the event of any performance anomaly at the node-level and a continuous drop in the correlation can indicate the presence of a true anomaly in the node. The log analysis of LADT assists in determining whether the correlation drop could be caused by naturally occurring cloud management activity such as VM migration, creation, suspension, termination or resizing. In this way, any potential anomaly alerts are reasoned about to prevent false positives that could be caused by the cloud operator’s activity. We demonstrate LADT with log analysis in a Cloud environment to show how the log analysis is combined with the correlation of systems metrics to achieve accurate anomaly detection.