985 resultados para JORDAN ALGEBRAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give a description of delta-derivations of (n + 1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial delta-derivations of Filippov algebras and show that there are no non-trivial delta-derivations of the simple ternary Mal'tsev algebra M-8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper, a complete description of the delta-derivations and the delta-superderivations of semisimple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic p not equal 2 is given. In particular, new examples of nontrivial (1/2)-derivations and odd (1/2)-superderivations are given that are not operators of right multiplication by an element of the superalgebra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs up to isomorphism over a class of twisted generalized Weyl algebras which includes the multiparameter twisted Weyl algebras. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the structure of spectral isometries between unital Banach algebras under the hypothesis that the codomain is commutative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to explicitly describe in terms of generators and relations the universal central extension of the infinite dimensional Lie algebra, g circle times C[t, t(-1), u vertical bar u(2) = (t(2) - b(2))(t(2) - c(2))], appearing in the work of Date, Jimbo, Kashiwara and Miwa in their study of integrable systems arising from the Landau-Lifshitz differential equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra P(ps), P subset of P(ps). The structure of P-induced modules in this case is fully determined by the structure of P(ps)-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. Konig, V. Mazorchuk [Forum Math. 13 (2001), 641-661], B. Cox [Pacific J. Math. 165 (1994), 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004), 47-63].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let A be an iterated tilted algebra. We will construct an Auslander generator M in order to show that the representation dimension of A is three in case A is representation infinite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although texts and wall paintings suggest that bees were kept in the Ancient Near East for the production of precious wax and honey, archaeological evidence for beekeeping has never been found. The Biblical term ""honey"" commonly was interpreted as the sweet product of fruits, such as dates and figs. The recent discovery of unfired clay cylinders similar to traditional hives still used in the Near East at the site of Tel Rehov in the Jordan valley in northern Israel suggests that a large-scale apiary was located inside the town, dating to the 10th-early 9th centuries B.C.E. This paper reports the discovery of remains of honeybee workers, drones, pupae, and larvae inside these hives. The exceptional preservation of these remains provides unequivocal identification of the clay cylinders as the most ancient beehives yet found. Morphometric analyses indicate that these bees differ from the local subspecies Apis mellifera syriaca and from all subspecies other than A. m. anatoliaca, which presently resides in parts of Turkey. This finding suggests either that the Western honeybee subspecies distribution has undergone rapid change during the last 3,000 years or that the ancient inhabitants of Tel Rehov imported bees superior to the local bees in terms of their milder temper and improved honey yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the results of spin ladder models associated with the Lie algebras su(2(n)) to the case of the orthogonal and symplectic algebras o(2(n)), sp(2(n)) where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX-type rung interactions and applied magnetic field term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jordan-Wigner fermionization for the one-dimensional Bariev model of three coupled XY chains is formulated. The L-matrix in terms of fermion operators and the R-matrix are presented explicitly. Furthermore, the graded reflection equations and their solutions are discussed.