Multiparameter twisted Weyl algebras


Autoria(s): Futorny, Vyacheslav; Hartwig, Jonas T.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

14/10/2013

14/10/2013

01/05/2012

Resumo

We introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs up to isomorphism over a class of twisted generalized Weyl algebras which includes the multiparameter twisted Weyl algebras. (C) 2011 Elsevier Inc. All rights reserved.

FAPESP [2008/10688-1, 2005/60337-2]

FAPESP

CNPq

CNPq [301743/2007-0]

Identificador

JOURNAL OF ALGEBRA, SAN DIEGO, v. 357, pp. 69-93, MAY 1, 2012

0021-8693

http://www.producao.usp.br/handle/BDPI/35046

10.1016/j.jalgebra.2011.11.004

http://dx.doi.org/10.1016/j.jalgebra.2011.11.004

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

SAN DIEGO

Relação

Journal of Algebra

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #QUANTIZED WEYL ALGEBRA #GENERALIZED WEYL ALGEBRA #SIMPLE RING #WHITTAKER MODULE #IRREDUCIBLE REPRESENTATION #SIMPLE WEIGHT MODULES #REPRESENTATIONS #RINGS #MATHEMATICS
Tipo

article

original article

publishedVersion