Multiparameter twisted Weyl algebras
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
14/10/2013
14/10/2013
01/05/2012
|
Resumo |
We introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs up to isomorphism over a class of twisted generalized Weyl algebras which includes the multiparameter twisted Weyl algebras. (C) 2011 Elsevier Inc. All rights reserved. FAPESP [2008/10688-1, 2005/60337-2] FAPESP CNPq CNPq [301743/2007-0] |
Identificador |
JOURNAL OF ALGEBRA, SAN DIEGO, v. 357, pp. 69-93, MAY 1, 2012 0021-8693 http://www.producao.usp.br/handle/BDPI/35046 10.1016/j.jalgebra.2011.11.004 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO |
Relação |
Journal of Algebra |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #QUANTIZED WEYL ALGEBRA #GENERALIZED WEYL ALGEBRA #SIMPLE RING #WHITTAKER MODULE #IRREDUCIBLE REPRESENTATION #SIMPLE WEIGHT MODULES #REPRESENTATIONS #RINGS #MATHEMATICS |
Tipo |
article original article publishedVersion |