997 resultados para Inverse Methodology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A calibration methodology based on an efficient and stable mathematical regularization scheme is described. This scheme is a variant of so-called Tikhonov regularization in which the parameter estimation process is formulated as a constrained minimization problem. Use of the methodology eliminates the need for a modeler to formulate a parsimonious inverse problem in which a handful of parameters are designated for estimation prior to initiating the calibration process. Instead, the level of parameter parsimony required to achieve a stable solution to the inverse problem is determined by the inversion algorithm itself. Where parameters, or combinations of parameters, cannot be uniquely estimated, they are provided with values, or assigned relationships with other parameters, that are decreed to be realistic by the modeler. Conversely, where the information content of a calibration dataset is sufficient to allow estimates to be made of the values of many parameters, the making of such estimates is not precluded by preemptive parsimonizing ahead of the calibration process. White Tikhonov schemes are very attractive and hence widely used, problems with numerical stability can sometimes arise because the strength with which regularization constraints are applied throughout the regularized inversion process cannot be guaranteed to exactly complement inadequacies in the information content of a given calibration dataset. A new technique overcomes this problem by allowing relative regularization weights to be estimated as parameters through the calibration process itself. The technique is applied to the simultaneous calibration of five subwatershed models, and it is demonstrated that the new scheme results in a more efficient inversion, and better enforcement of regularization constraints than traditional Tikhonov regularization methodologies. Moreover, it is argued that a joint calibration exercise of this type results in a more meaningful set of parameters than can be achieved by individual subwatershed model calibration. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kalman inverse filtering is used to develop a methodology for real-time estimation of forces acting at the interface between tyre and road on large off-highway mining trucks. The system model formulated is capable of estimating the three components of tyre-force at each wheel of the truck using a practical set of measurements and inputs. Good tracking is obtained by the estimated tyre-forces when compared with those simulated by an ADAMS virtual-truck model. A sensitivity analysis determines the susceptibility of the tyre-force estimates to uncertainties in the truck's parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems and is demonstrated on nonlinear single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) examples. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems. © 2004 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What role can climatically appropriate subdivision design play in decreasing the use of energy required to cool premises by maximising access to natural ventilation? How can this design be achieved? The subdivision design stage is critical to urban and suburban sustainability outcomes, as significant changes after development are constrained by the configuration of the subdivision, and then by the construction of the dwellings. Existing Australian lot rating methodologies for energy efficiency, such as that by the Sustainable Energy Development Authority (SEDA), focus on reducing heating needs by increasing solar access, a key need in Australia’s temperate zone. A recent CRC CI project, Sustainable Subdivisions: Energy (Miller and Ambrose 2005) examined these guidelines to see if they could be adapted for use in subtropical South East Queensland (SEQ). Correlating the lot ratings with dwelling ratings, the project found that the SEDA guidelines would need to be modified for use to make allowance for natural ventilation. In SEQ, solar access for heating is less important than access to natural ventilation, and there is a need to reduce energy used to cool dwellings. In Queensland, the incidence of residential air-conditioning was predicted to reach 50 per cent by the end of 2005 (Mickel 2004). The CRC-CI, Sustainable Subdivisions: Ventilation Project (CRC-CI, in progress), aims to verify and quantify the role natural ventilation has in cooling residences in subtropical climates and develop a lot rating methodology for SEQ. This paper reviews results from an industry workshop that explored the current attitudes and methodologies used by a range of professionals involved in subdivision design and development in SEQ. Analysis of the workshop reveals that a key challenge for sustainability is that land development in subtropical SEQ is commonly a separate process from house design and siting. Finally, the paper highlights some of the issues that regulators and industry face in adopting a lot rating methodology for subdivisions offering improved ventilation access, including continuing disagreement between professionals over the desirability of rating tools.